Multiple strategies of brain organoidogenesis have enabled the investigation of human cerebral corticogenesis in-vitro with increasing accuracy. However, little is yet known about how closely the gene co-expression patterns seen in brain organoids (BO) match those of fetal cortex. Here we benchmarked BO against fetal corticogenesis by integrating transcriptomes from in-house differentiated cortical BO (CBO), other BO systems, human fetal brain samples processed in-house, and pre-natal cortices from the BrainSpan Atlas. We identified and ranked co-expression patterns and hubs of corticogenesis and CBO differentiation, highlighting well-preserved and variable trends across BO protocols, and we found heterochronicity of differentiation across BO models compared to fetal cortex. Once performed this benchmarking, we used CBO for disease-modelling of Weaver syndrome (WS), a rare disease characterized by intellectual disability. WS is associated with mutations in Polycomb repressive complex 2, a repressor of gene expression through H3K27me3. We differentiated patient-derived CBO and profiled their transcriptome and epigenome at different time-points, revealing upregulation of genes involved in neuronal maturation and migration as well as alteration of glucose metabolism in WS. Intersection of differentially expressed genes between WS- and control-CBO across stages with H3K27me3 ChIP-seq peaks, DNA-methylation profiles and dysregulated genes in CBO from a CRISPR/Cas9-engineered EZH2 KO revealed a set of PRC2 targets possibly mediating the WS intellectual disability phenotype. Our approach identified commonalities and divergences between state-of-the-art BO systems, providing a resource to query when modelling human corticogenesis, and identified molecular phenotypes and targets relevant for WS, generating the framework for future potential therapeutic intervention.

BRAIN ORGANOID MODELLING OF HUMAN CORTICOGENESIS:THE PARADIGM OF WEAVER SYNDROME

TRATTARO, SEBASTIANO
2021

Abstract

Multiple strategies of brain organoidogenesis have enabled the investigation of human cerebral corticogenesis in-vitro with increasing accuracy. However, little is yet known about how closely the gene co-expression patterns seen in brain organoids (BO) match those of fetal cortex. Here we benchmarked BO against fetal corticogenesis by integrating transcriptomes from in-house differentiated cortical BO (CBO), other BO systems, human fetal brain samples processed in-house, and pre-natal cortices from the BrainSpan Atlas. We identified and ranked co-expression patterns and hubs of corticogenesis and CBO differentiation, highlighting well-preserved and variable trends across BO protocols, and we found heterochronicity of differentiation across BO models compared to fetal cortex. Once performed this benchmarking, we used CBO for disease-modelling of Weaver syndrome (WS), a rare disease characterized by intellectual disability. WS is associated with mutations in Polycomb repressive complex 2, a repressor of gene expression through H3K27me3. We differentiated patient-derived CBO and profiled their transcriptome and epigenome at different time-points, revealing upregulation of genes involved in neuronal maturation and migration as well as alteration of glucose metabolism in WS. Intersection of differentially expressed genes between WS- and control-CBO across stages with H3K27me3 ChIP-seq peaks, DNA-methylation profiles and dysregulated genes in CBO from a CRISPR/Cas9-engineered EZH2 KO revealed a set of PRC2 targets possibly mediating the WS intellectual disability phenotype. Our approach identified commonalities and divergences between state-of-the-art BO systems, providing a resource to query when modelling human corticogenesis, and identified molecular phenotypes and targets relevant for WS, generating the framework for future potential therapeutic intervention.
13-dic-2021
Inglese
Brain organoids; WGCNA; human corticogenesis; neurodevelopment; brain development; gene co-expression patterns; hiPSCs; transcriptomics; Weaver syndrome; PRC2; EZH2; disease modelling
TESTA, GIUSEPPE
MINUCCI, SAVERIO
Università degli Studi di Milano
File in questo prodotto:
File Dimensione Formato  
phd_unimi_R11759.pdf

Open Access dal 21/04/2023

Dimensione 39.08 MB
Formato Adobe PDF
39.08 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/74927
Il codice NBN di questa tesi è URN:NBN:IT:UNIMI-74927