Unconventional computing paradigms are subject of increasing interest for the design and the development of computing systems that aim to overcome the limitations of standard digital technologies related to low power efficiency and intrinsic integration limits in the fabrication processes. Networks of nano-objects fabricated exploiting the self-assembling of their building blocks at the nanoscale, are promising physical substrate for the fabrication of neuromorphic devices thanks to their non-linear electrical properties and dynamic behavior in response to external applied voltage. Recently, cluster-assembled metallic films showed resistive switching properties under the application of an external electrical films and the possibility to fabricate multi-electrode device capable to implement information processing systems [9, 10]. Here I studied the non local and correlated electrical behaviour of multi-electrode cluster-assembeld gold films and I proposed a device that exploits the coduction porperties of these systems to implement efficient and autonomous data processing.
CHARACTERIZATION OF NANOSTRUCTURED METALLIC FILMS WITH NON-LINEAR ELECTRICAL PROPERTIES FOR THE FABRICATION OF NEUROMORPHIC DEVICES AND UNCONVENTIONAL DATA PROCESSING
MIRIGLIANO, MATTEO
2021
Abstract
Unconventional computing paradigms are subject of increasing interest for the design and the development of computing systems that aim to overcome the limitations of standard digital technologies related to low power efficiency and intrinsic integration limits in the fabrication processes. Networks of nano-objects fabricated exploiting the self-assembling of their building blocks at the nanoscale, are promising physical substrate for the fabrication of neuromorphic devices thanks to their non-linear electrical properties and dynamic behavior in response to external applied voltage. Recently, cluster-assembled metallic films showed resistive switching properties under the application of an external electrical films and the possibility to fabricate multi-electrode device capable to implement information processing systems [9, 10]. Here I studied the non local and correlated electrical behaviour of multi-electrode cluster-assembeld gold films and I proposed a device that exploits the coduction porperties of these systems to implement efficient and autonomous data processing.File | Dimensione | Formato | |
---|---|---|---|
phd_unimi_R11890.pdf
accesso aperto
Dimensione
7.26 MB
Formato
Adobe PDF
|
7.26 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/75073
URN:NBN:IT:UNIMI-75073