Strain offers an effective degree of freedom for tailoring the band structure of semiconducting materials, opening up interesting physical phenomena and advanced application perspectives. Strain can be used to lift degeneracies in the band structure at high symmetry points of reciprocal space, thereby suppressing intervalley and interband scattering. Indeed, the modification of the energy bands curvature near their extrema change therefore the effective masses which are relevant to electronic transport. These ideas have already been widely applied to group-IV semiconductors (including Si as well as Ge and SiGe) to produce significant carrier mobility enhancements, leading to improve performances in MOSFET devices. Moreover, strain effects on the band structure offer great potential for enhancing the performance of photonic and optoelectronic devices. In optoelectronics, Ge is already a well-established photodetector material used for on-chip data distribution, thanks to its direct compatibility with the Si microelectronics platform. Additional applications within the emerging field of group-IV photonics, including light emitters and lasers are also under investigation. Particularly remarkable for Ge is that strain can also be used to modify the nature of its fundamental energy band gap. This modification leads to a dramatic change in its optical radiative properties, with increasing the interband radiative efficiency and allowing population inversion and optical gain: various Ge-based LEDs and photodiodes were successfully fabricated on Si, eventually achieving lasing action. Despite such advances, several questions remain unanswered, such as the impact of nonradiative recombination on carrier dynamics and optical gain. Beside its applications in photonics, Ge have a unique potential also in the field of spintronics. The main goal of spintronics is to encode digital data in the electron spin. With this aim, research effort have been focus on materials which possess highly desired features, such as long spin lifetimes and large diffusion lengths. As opposed to Si, the pseudo-direct-gap behaviour of Ge offers also the unique possibility to efficiently orient spin polarized carriers by the absorption of circularly polarized light through the direct-gap transition. By exploiting the coupling between the angular momentum of circularly polarized photons and the electronic spin state, the polarization of emitted luminescence can be used to gather information about the physical mechanisms governing nonequilibrium spin dynamics. The multivalley conduction band (CB) of Ge and the sizeable spin-orbit interaction thus offer a nontrivial and intriguing spin physics. These properties, together with the feasible monolithic integration in the microelectronics technology, recently put forward the potential of Ge in bridging the gap between spintronic concepts and semiconductor device physics. The present work is a fundamental study about spin properties of electrons in strained Ge heterostructures, with the aim of understand the strain effect on carrier and spin kinetics. This is of both fundamental interest and central importance for applications in spintronics and photonics. In particular, we have employed polarization-resolved photoluminescence (PL) to investigate the spin physics of Ge-based systems. In this thesis we will focus on the optical generation of spin polarized carriers and on the polarization of the PL of of two notable systems. First, we will exploit strain effects on the PL polarization of the direct-gap emission in tensile strained Ge layers epitaxially grown on Si substrates. Then we will focus on the PL polarization decay of the indirect emission in compressively strained Ge quantum wells embedded in SiGe barriers. By doing so we will provide a direct measurement of the spin lifetime in this heterostructure.

L’ingegnerizzazione della struttura a bande attraverso l’applicazione dello strain è un approccio innovativo che permette di realizzare dispositivi che combinano funzionalità elettroniche, fotoniche e spintroniche. Lo strain può essere infatti usato per rimuovere degenerazioni nella struttura a bande in punti a simmetria elevata dello spazio reciproco, sopprimendo meccanismi di rilassamento. Inoltre, gli effetti dello strain offrono un grande potenziale per migliorare le prestazioni dei dispositivi fotonici e optoelettronici. In optoelettronica, il Ge è già noto come materiale per fotorivelazione utilizzato nella distribuzione dei dati su chip grazie alla sua diretta compatibilità con la piattaforma Si microelettronica. Recentemente sono studiate ulteriori applicazioni nel campo emergente della fotonica del gruppo IV, inclusi emettitori di luce e laser a base di Ge. Sorprendentemente, nel Ge l’applicazione di strain comporta una transizione da gap indiretto a diretto. Questo porta a un cambiamento radicale delle sue proprietà ottiche, con l'aumento dell'efficienza radiativa interbanda e la possibilità di avere inversione di popolazione e guadagno ottico: vari LED e fotodiodi basati su Ge sono stati fabbricati con successo su Si, ottenendo infine emissione laser. Nonostante tali progressi, molte domande rimangono senza risposta, come ad esempio l'impatto della ricombinazione non radiativa sulla dinamica dei portatori e il calcolo del guadagno ottico. Oltre alle sue applicazioni nel campo della fotonica, il Ge ha un potenziale unico anche nel campo della spintronica. La spintronica ha come obiettivo principale la codifica dei bit d’informazione nello spin dell'elettrone. Con questo obiettivo, lo sforzo della ricerca scientifica è stato focalizzato su materiali che possiedono caratteristiche altamente desiderate, come tempi di vita e diffusione dello spin lunghi. Tra i semiconduttori, gli elementi del IV gruppo presentano proprietà dello spin di ampio interesse. Il comportamento a gap pseudo-diretto del Ge offre inoltre la possibilità unica di orientare gli spin dei portatori attraverso l'assorbimento di luce polarizzata circolarmente. Sfruttando l'accoppiamento tra il momento angolare dei fotoni polarizzati circolarmente e lo stato di spin elettronico, la polarizzazione della luminescenza emessa può essere utilizzata per raccogliere informazioni sui meccanismi fisici che regolano la dinamica dello spin. La banda di conduzione a multivalle e la forte interazione spin-orbita offrono nel germanio una fisica dello spin più complessa e interessante rispetto ai semiconduttori a gap diretto di composti III-V. Il lavoro presentato è uno studio fondamentale sulle proprietà di spin degli elettroni in eterostrutture di Ge sotto strain, con l'obiettivo di comprendere l'effetto di quest’ultimo sulla cinetica dei portatori e dello spin. Questo è di fondamentale interesse e di importanza centrale per le applicazioni in spintronica e fotonica. In particolare, abbiamo impiegato la fotoluminescenza (PL) risolta in polarizzazione per studiare la fisica degli spin dei sistemi basati su Ge. In questa tesi viene presentata la generazione ottica di portatori spin-polarizzati e la polarizzazione della PL di due eterostrutture di importanza strategica dal punto di vista applicativo. In primo luogo, sfrutteremo gli effetti dello strain sulla polarizzazione della PL del gap diretto in epistrati di Ge su substrati di silicio. Quindi ci concentreremo sul decadimento della polarizzazione PL dell'emissione indiretta in quantum well di Ge in barriere di SiGe. In questo modo forniremo una misurazione diretta del tempo di vita dello spin in queste eterostrutture.

Strain-dependent spin phenomena in Ge-based low dimensional structures

VITIELLO, ELISA
2018

Abstract

Strain offers an effective degree of freedom for tailoring the band structure of semiconducting materials, opening up interesting physical phenomena and advanced application perspectives. Strain can be used to lift degeneracies in the band structure at high symmetry points of reciprocal space, thereby suppressing intervalley and interband scattering. Indeed, the modification of the energy bands curvature near their extrema change therefore the effective masses which are relevant to electronic transport. These ideas have already been widely applied to group-IV semiconductors (including Si as well as Ge and SiGe) to produce significant carrier mobility enhancements, leading to improve performances in MOSFET devices. Moreover, strain effects on the band structure offer great potential for enhancing the performance of photonic and optoelectronic devices. In optoelectronics, Ge is already a well-established photodetector material used for on-chip data distribution, thanks to its direct compatibility with the Si microelectronics platform. Additional applications within the emerging field of group-IV photonics, including light emitters and lasers are also under investigation. Particularly remarkable for Ge is that strain can also be used to modify the nature of its fundamental energy band gap. This modification leads to a dramatic change in its optical radiative properties, with increasing the interband radiative efficiency and allowing population inversion and optical gain: various Ge-based LEDs and photodiodes were successfully fabricated on Si, eventually achieving lasing action. Despite such advances, several questions remain unanswered, such as the impact of nonradiative recombination on carrier dynamics and optical gain. Beside its applications in photonics, Ge have a unique potential also in the field of spintronics. The main goal of spintronics is to encode digital data in the electron spin. With this aim, research effort have been focus on materials which possess highly desired features, such as long spin lifetimes and large diffusion lengths. As opposed to Si, the pseudo-direct-gap behaviour of Ge offers also the unique possibility to efficiently orient spin polarized carriers by the absorption of circularly polarized light through the direct-gap transition. By exploiting the coupling between the angular momentum of circularly polarized photons and the electronic spin state, the polarization of emitted luminescence can be used to gather information about the physical mechanisms governing nonequilibrium spin dynamics. The multivalley conduction band (CB) of Ge and the sizeable spin-orbit interaction thus offer a nontrivial and intriguing spin physics. These properties, together with the feasible monolithic integration in the microelectronics technology, recently put forward the potential of Ge in bridging the gap between spintronic concepts and semiconductor device physics. The present work is a fundamental study about spin properties of electrons in strained Ge heterostructures, with the aim of understand the strain effect on carrier and spin kinetics. This is of both fundamental interest and central importance for applications in spintronics and photonics. In particular, we have employed polarization-resolved photoluminescence (PL) to investigate the spin physics of Ge-based systems. In this thesis we will focus on the optical generation of spin polarized carriers and on the polarization of the PL of of two notable systems. First, we will exploit strain effects on the PL polarization of the direct-gap emission in tensile strained Ge layers epitaxially grown on Si substrates. Then we will focus on the PL polarization decay of the indirect emission in compressively strained Ge quantum wells embedded in SiGe barriers. By doing so we will provide a direct measurement of the spin lifetime in this heterostructure.
13-mar-2018
Inglese
L’ingegnerizzazione della struttura a bande attraverso l’applicazione dello strain è un approccio innovativo che permette di realizzare dispositivi che combinano funzionalità elettroniche, fotoniche e spintroniche. Lo strain può essere infatti usato per rimuovere degenerazioni nella struttura a bande in punti a simmetria elevata dello spazio reciproco, sopprimendo meccanismi di rilassamento. Inoltre, gli effetti dello strain offrono un grande potenziale per migliorare le prestazioni dei dispositivi fotonici e optoelettronici. In optoelettronica, il Ge è già noto come materiale per fotorivelazione utilizzato nella distribuzione dei dati su chip grazie alla sua diretta compatibilità con la piattaforma Si microelettronica. Recentemente sono studiate ulteriori applicazioni nel campo emergente della fotonica del gruppo IV, inclusi emettitori di luce e laser a base di Ge. Sorprendentemente, nel Ge l’applicazione di strain comporta una transizione da gap indiretto a diretto. Questo porta a un cambiamento radicale delle sue proprietà ottiche, con l'aumento dell'efficienza radiativa interbanda e la possibilità di avere inversione di popolazione e guadagno ottico: vari LED e fotodiodi basati su Ge sono stati fabbricati con successo su Si, ottenendo infine emissione laser. Nonostante tali progressi, molte domande rimangono senza risposta, come ad esempio l'impatto della ricombinazione non radiativa sulla dinamica dei portatori e il calcolo del guadagno ottico. Oltre alle sue applicazioni nel campo della fotonica, il Ge ha un potenziale unico anche nel campo della spintronica. La spintronica ha come obiettivo principale la codifica dei bit d’informazione nello spin dell'elettrone. Con questo obiettivo, lo sforzo della ricerca scientifica è stato focalizzato su materiali che possiedono caratteristiche altamente desiderate, come tempi di vita e diffusione dello spin lunghi. Tra i semiconduttori, gli elementi del IV gruppo presentano proprietà dello spin di ampio interesse. Il comportamento a gap pseudo-diretto del Ge offre inoltre la possibilità unica di orientare gli spin dei portatori attraverso l'assorbimento di luce polarizzata circolarmente. Sfruttando l'accoppiamento tra il momento angolare dei fotoni polarizzati circolarmente e lo stato di spin elettronico, la polarizzazione della luminescenza emessa può essere utilizzata per raccogliere informazioni sui meccanismi fisici che regolano la dinamica dello spin. La banda di conduzione a multivalle e la forte interazione spin-orbita offrono nel germanio una fisica dello spin più complessa e interessante rispetto ai semiconduttori a gap diretto di composti III-V. Il lavoro presentato è uno studio fondamentale sulle proprietà di spin degli elettroni in eterostrutture di Ge sotto strain, con l'obiettivo di comprendere l'effetto di quest’ultimo sulla cinetica dei portatori e dello spin. Questo è di fondamentale interesse e di importanza centrale per le applicazioni in spintronica e fotonica. In particolare, abbiamo impiegato la fotoluminescenza (PL) risolta in polarizzazione per studiare la fisica degli spin dei sistemi basati su Ge. In questa tesi viene presentata la generazione ottica di portatori spin-polarizzati e la polarizzazione della PL di due eterostrutture di importanza strategica dal punto di vista applicativo. In primo luogo, sfrutteremo gli effetti dello strain sulla polarizzazione della PL del gap diretto in epistrati di Ge su substrati di silicio. Quindi ci concentreremo sul decadimento della polarizzazione PL dell'emissione indiretta in quantum well di Ge in barriere di SiGe. In questo modo forniremo una misurazione diretta del tempo di vita dello spin in queste eterostrutture.
strain,; Ge,; spin,; quantum; wells
PEZZOLI, FABIO
GRILLI, EMANUELE ENRICO
Università degli Studi di Milano-Bicocca
File in questo prodotto:
File Dimensione Formato  
phd_unimib_725941.pdf

accesso aperto

Dimensione 11.25 MB
Formato Adobe PDF
11.25 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/76535
Il codice NBN di questa tesi è URN:NBN:IT:UNIMIB-76535