Rubber nanocomposites (NCs) are commonly used materials in tyres industries. Their mechanical properties are the combined result of the addition of reinforcing filler nanoparticles (NPs) and the vulcanization process. Sulphur vulcanization reaction is based on the formation of a chemical cross-link between polymer chains through mono-, bi- and poly-sulphide bridges. The enhancement of the vulcanization rate and cross-linking efficiency is achieved thanks to a complex catalytic system, composed of accelerators (as sulphenamides), activators (metal oxides) and co-activators (fatty acids). Zinc oxide (ZnO) is the primary industrial activator and a main role is recognized to zinc ions, able to influence both kinetic and mechanistic aspects of the reaction, through the shortening of sulphur bridges in the products (associated to higher cross-linking densities). Nevertheless, some drawbacks are connected to the low dispersion of ZnO, because of the low affinity with the rubber, such as the use of high ZnO amount in rubber (3-5 parts per hundred rubber) and environmental issues, due to zinc release during the lifecycle of tyres. In this scenario, the aim of the PhD project is the development of innovative zinc-based activators for rubber vulcanization process, to reduce the amount of microcrystalline ZnO used in the industrial process and to decrease the zinc leaching during the preparation and use of the material, keeping a high vulcanization efficiency. Thus, the introduction of more active zinc species in the form of reactive sites has been proposed. Starting from nanosized ZnO particles anchored onto surface silica particles (ZnO/SiO2), single zinc sites (Zn/SiO2) dispersed on silica were synthesized, to exploit the advantages derived from the higher distribution, while increasing the availability and reactivity of the activator towards the other vulcanization reagents. In the first part, the syntheses of the materials were studied and their properties deeply investigated, through structural, morphological and surface analyses. The formation of amorphous ZnO NPs with tunable zinc loading and size on silica was achieved exploiting an optimized sol-gel procedure, based on hydrolysis and condensation of a zinc precursor in a basic environment. Besides, isolated zinc(II) centres anchored to silica were synthesized in a two-step reaction, in which silica was pre-functionalized with a grafting agent ((3-aminopropyl)triethoxysilane, APTES) and then reacted with a zinc precursor. The experimental characterization suggested the coordination of each zinc isolated centres to two amine groups and two labile groups (hydroxide or nitrate), promoting a higher reactivity. Both ZnO/SiO2 and Zn/SiO2 were tested as activators in rubber NCs and compared to microcrystalline ZnO; higher vulcanization efficiencies and improved mechanical properties were achieved, with increased cross-linking densities, using half of the conventional amount of ZnO. Lately, the kinetic of the vulcanization reaction was studied thanks to a model approach, called “Model Compound Vulcanization” (MCV). This study highlighted that the vulcanization process proceeded with an improved kinetic and following different reaction mechanisms. In particular, Zn centres were proved to behave as heterogeneous catalytic sites during the reaction, with a potential impact on the reduction of zinc leaching from rubber NCs and a direct consequence on the cross-linking distribution of the vulcanized rubber NCs, evidenced through advanced morphological and mechanical analyses. Finally, the modulation of the structural parameters of the activators and the use into non-conventional systems, including anisotropic NPs reinforced NCs and organically modified polymers, demonstrated the possible modulation of their reactivity and the high versatility of the materials for applications into different systems.

I nanocompositi di gomma (NC) sono materiali comunemente usati nell’industria degli pneumatici. Le proprietà meccaniche dipendono sia dall’aggiunta delle nanoparticelle (NP) di filler rinforzanti e dal processo di vulcanizzazione. La reazione di vulcanizzazione a base zolfo si basa sulla formazione di un reticolo chimico tra le catene di polimero attraverso ponti mono-, bi- e poli-sulfurei. L’incremento della velocità di reazione e dell’efficienza di reticolazione è consentito da un complesso sistema catalitico, composto da acceleranti (ad esempio sulfenammidi), attivatori (ossidi metallici) e co-attivatori (acidi grassi). L’ossido di zinco (ZnO) è il principale attivatore usato industrialmente; un ruolo fondamentale è assegnato agli ioni zinco, in grado di influenzare aspetti cinetici e meccanicistici, come il processo di accorciamento dei ponti sulfurei nei prodotti di reticolazione (associato a maggiori densità di reticolo). Ciononostante, la bassa dispersione dell’ossido di zinco, dovuta ad una bassa affinità verso il polimero, porta ad un uso ingente di ZnO nelle gomme (3-5 parti per cento di gomma) e a problemi ambientali, connessi al rilascio dello zinco durante il ciclo di vita degli pneumatici. In questo quadro, lo scopo del progetto di dottorato è stato lo sviluppo di attivatori innovativi a base zinco per il processo di vulcanizzazione, per ridurre il quantitativo di ZnO micro-cristallino nel processo industriale e diminuire il rilascio di zinco, mantenendo un’elevata efficienza del processo. A tal scopo, l’introduzione di siti reattivi di zinco è stata indagata. Partendo da NP di ZnO ancorate sulla superficie della silice (ZnO/SiO2), siti singoli di zinco (Zn/SiO2) dispersi su silice sono stati sintetizzati, sfruttando i vantaggi derivanti da una maggiore dispersione dello zinco nel composito e incrementando la reattività e disponibilità dell’attivatore nella reazione. Inizialmente, la sintesi dei due materiali e le loro proprietà sono state studiate, tramite analisi strutturali, morfologiche e di superficie. NP di ZnO amorfe, con dimensioni e percentuali di carico su silice variabili, sono state sintetizzate utilizzando una procedura ottimizzata di tipo sol-gel, basata sul fenomeno di idrolisi e condensazione di un precursore di zinco in ambiente basico. Inoltre, centri isolati di zinco (II) sono stati preparati in una reazione a due fasi, in cui la silice è pre-funzionalizzata con un agente ancorante (3-amminopropil)trietossisilano, APTES) e in seguito fatta interagire con un precursore di zinco. La caratterizzazione sperimentale ha suggerito che ogni centro di zinco isolato fosse coordinato con due gruppi amminici e due gruppi labili (idrossidi o nitrati), che potessero promuovere una maggiore reattività. I test in NC di gomma, comparati con NC preparati con ZnO micro-cristallino, hanno dimostrato maggiori efficienze di vulcanizzazione, migliorate proprietà meccaniche, elevate densità di reticolo e maggiore rinforzo in presenza dei due attivatori, usando metà del quantitativo tradizionale di ZnO. La cinetica di reazione è stata studiata tramite un approccio modello (Model Compound Vulcanization, MCV), evidenziando una migliore cinetica di processo e differenti meccanismi di reazione per ZnO/SiO2 e Zn/SiO2. Inoltre, i centri di zinco isolati hanno dimostrato di comportarsi da siti catalitici eterogenei, con una potenziale riduzione del rilascio di zinco e conseguenze dirette sulla distribuzione della reticolazione nel composito vulcanizzato, evidenziato tramite analisi avanzate di tipo morfologico e meccanico. Infine, la modulazione dei parametri strutturali degli attivatori e il loro uso in sistemi non convenzionali, che includono compositi rinforzati da filler anisotropici e polimeri modificati organicamente, hanno dimostrato la possibile regolazione della reattività e l’alta versatilità dei due attivatori per applicazioni in diversi sistemi.

From nanosized to single sites zinc-based activators for rubber vulcanization process

MOSTONI, SILVIA
2019

Abstract

Rubber nanocomposites (NCs) are commonly used materials in tyres industries. Their mechanical properties are the combined result of the addition of reinforcing filler nanoparticles (NPs) and the vulcanization process. Sulphur vulcanization reaction is based on the formation of a chemical cross-link between polymer chains through mono-, bi- and poly-sulphide bridges. The enhancement of the vulcanization rate and cross-linking efficiency is achieved thanks to a complex catalytic system, composed of accelerators (as sulphenamides), activators (metal oxides) and co-activators (fatty acids). Zinc oxide (ZnO) is the primary industrial activator and a main role is recognized to zinc ions, able to influence both kinetic and mechanistic aspects of the reaction, through the shortening of sulphur bridges in the products (associated to higher cross-linking densities). Nevertheless, some drawbacks are connected to the low dispersion of ZnO, because of the low affinity with the rubber, such as the use of high ZnO amount in rubber (3-5 parts per hundred rubber) and environmental issues, due to zinc release during the lifecycle of tyres. In this scenario, the aim of the PhD project is the development of innovative zinc-based activators for rubber vulcanization process, to reduce the amount of microcrystalline ZnO used in the industrial process and to decrease the zinc leaching during the preparation and use of the material, keeping a high vulcanization efficiency. Thus, the introduction of more active zinc species in the form of reactive sites has been proposed. Starting from nanosized ZnO particles anchored onto surface silica particles (ZnO/SiO2), single zinc sites (Zn/SiO2) dispersed on silica were synthesized, to exploit the advantages derived from the higher distribution, while increasing the availability and reactivity of the activator towards the other vulcanization reagents. In the first part, the syntheses of the materials were studied and their properties deeply investigated, through structural, morphological and surface analyses. The formation of amorphous ZnO NPs with tunable zinc loading and size on silica was achieved exploiting an optimized sol-gel procedure, based on hydrolysis and condensation of a zinc precursor in a basic environment. Besides, isolated zinc(II) centres anchored to silica were synthesized in a two-step reaction, in which silica was pre-functionalized with a grafting agent ((3-aminopropyl)triethoxysilane, APTES) and then reacted with a zinc precursor. The experimental characterization suggested the coordination of each zinc isolated centres to two amine groups and two labile groups (hydroxide or nitrate), promoting a higher reactivity. Both ZnO/SiO2 and Zn/SiO2 were tested as activators in rubber NCs and compared to microcrystalline ZnO; higher vulcanization efficiencies and improved mechanical properties were achieved, with increased cross-linking densities, using half of the conventional amount of ZnO. Lately, the kinetic of the vulcanization reaction was studied thanks to a model approach, called “Model Compound Vulcanization” (MCV). This study highlighted that the vulcanization process proceeded with an improved kinetic and following different reaction mechanisms. In particular, Zn centres were proved to behave as heterogeneous catalytic sites during the reaction, with a potential impact on the reduction of zinc leaching from rubber NCs and a direct consequence on the cross-linking distribution of the vulcanized rubber NCs, evidenced through advanced morphological and mechanical analyses. Finally, the modulation of the structural parameters of the activators and the use into non-conventional systems, including anisotropic NPs reinforced NCs and organically modified polymers, demonstrated the possible modulation of their reactivity and the high versatility of the materials for applications into different systems.
27-feb-2019
Inglese
I nanocompositi di gomma (NC) sono materiali comunemente usati nell’industria degli pneumatici. Le proprietà meccaniche dipendono sia dall’aggiunta delle nanoparticelle (NP) di filler rinforzanti e dal processo di vulcanizzazione. La reazione di vulcanizzazione a base zolfo si basa sulla formazione di un reticolo chimico tra le catene di polimero attraverso ponti mono-, bi- e poli-sulfurei. L’incremento della velocità di reazione e dell’efficienza di reticolazione è consentito da un complesso sistema catalitico, composto da acceleranti (ad esempio sulfenammidi), attivatori (ossidi metallici) e co-attivatori (acidi grassi). L’ossido di zinco (ZnO) è il principale attivatore usato industrialmente; un ruolo fondamentale è assegnato agli ioni zinco, in grado di influenzare aspetti cinetici e meccanicistici, come il processo di accorciamento dei ponti sulfurei nei prodotti di reticolazione (associato a maggiori densità di reticolo). Ciononostante, la bassa dispersione dell’ossido di zinco, dovuta ad una bassa affinità verso il polimero, porta ad un uso ingente di ZnO nelle gomme (3-5 parti per cento di gomma) e a problemi ambientali, connessi al rilascio dello zinco durante il ciclo di vita degli pneumatici. In questo quadro, lo scopo del progetto di dottorato è stato lo sviluppo di attivatori innovativi a base zinco per il processo di vulcanizzazione, per ridurre il quantitativo di ZnO micro-cristallino nel processo industriale e diminuire il rilascio di zinco, mantenendo un’elevata efficienza del processo. A tal scopo, l’introduzione di siti reattivi di zinco è stata indagata. Partendo da NP di ZnO ancorate sulla superficie della silice (ZnO/SiO2), siti singoli di zinco (Zn/SiO2) dispersi su silice sono stati sintetizzati, sfruttando i vantaggi derivanti da una maggiore dispersione dello zinco nel composito e incrementando la reattività e disponibilità dell’attivatore nella reazione. Inizialmente, la sintesi dei due materiali e le loro proprietà sono state studiate, tramite analisi strutturali, morfologiche e di superficie. NP di ZnO amorfe, con dimensioni e percentuali di carico su silice variabili, sono state sintetizzate utilizzando una procedura ottimizzata di tipo sol-gel, basata sul fenomeno di idrolisi e condensazione di un precursore di zinco in ambiente basico. Inoltre, centri isolati di zinco (II) sono stati preparati in una reazione a due fasi, in cui la silice è pre-funzionalizzata con un agente ancorante (3-amminopropil)trietossisilano, APTES) e in seguito fatta interagire con un precursore di zinco. La caratterizzazione sperimentale ha suggerito che ogni centro di zinco isolato fosse coordinato con due gruppi amminici e due gruppi labili (idrossidi o nitrati), che potessero promuovere una maggiore reattività. I test in NC di gomma, comparati con NC preparati con ZnO micro-cristallino, hanno dimostrato maggiori efficienze di vulcanizzazione, migliorate proprietà meccaniche, elevate densità di reticolo e maggiore rinforzo in presenza dei due attivatori, usando metà del quantitativo tradizionale di ZnO. La cinetica di reazione è stata studiata tramite un approccio modello (Model Compound Vulcanization, MCV), evidenziando una migliore cinetica di processo e differenti meccanismi di reazione per ZnO/SiO2 e Zn/SiO2. Inoltre, i centri di zinco isolati hanno dimostrato di comportarsi da siti catalitici eterogenei, con una potenziale riduzione del rilascio di zinco e conseguenze dirette sulla distribuzione della reticolazione nel composito vulcanizzato, evidenziato tramite analisi avanzate di tipo morfologico e meccanico. Infine, la modulazione dei parametri strutturali degli attivatori e il loro uso in sistemi non convenzionali, che includono compositi rinforzati da filler anisotropici e polimeri modificati organicamente, hanno dimostrato la possibile regolazione della reattività e l’alta versatilità dei due attivatori per applicazioni in diversi sistemi.
Attivatore; Siti singoli; Ossido di zinco; Rilascio di zinco; Vulcanizzazione
SCOTTI, ROBERTO
Università degli Studi di Milano-Bicocca
File in questo prodotto:
File Dimensione Formato  
phd_unimib_810913.pdf

Open Access dal 27/02/2022

Dimensione 10.47 MB
Formato Adobe PDF
10.47 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/77397
Il codice NBN di questa tesi è URN:NBN:IT:UNIMIB-77397