Background. Deranged metabolism is a hallmark of cancer cells which need to sustain uncontrolled cell growth while maintaining a proper energy balance. Means to interfere with the cancer-associated metabolic alterations to control tumor cell proliferation are actively pursued. Most tumors rely on enhanced glucose consumption to supply Krebs cycle intermediates (a process called anaplerosis), which are continuously diverted to the macromolecular biosynthesis needed by proliferation. However, nutrients other than glucose may support anaplerosis in tumors, likely depending on the oncogenic mutations present in the particular type of cancer. Glutamine (Gln), the most abundant amino acid in blood, is a precursor of other amino acids (i.e. asparagine), nucleotides and glutathione, and stimulates mTOR. Tumors that rely on Gln instead of glucose for anaplerosis exhibit an enhanced requirement for the amino acid (“glutamine addiction”); however, reliable markers of “glutamine addiction” are still needed; in particular, the role of Glutamine Synthetase (GS), a key enzyme of Gln metabolism, has not been yet defined in this context. GS expression is known to be regulated at the protein level by intracellular Gln content, but, at transcriptional level, its expression is driven by the oncogene β-catenin. Consistently, its over-expression is a marker of β-catenin mutations in hepatocellular carcinoma (HCC), a liver cancer with poor prognosis. We have hypothesized that β-catenin-dependent GS expression may be a marker of a metabolic drift towards Gln-dependence and, hence, of Gln-addiction. Aim of the thesis. The purpose of this study is to investigate the effects of Gln depletion on human HCC cells so as to verify the hypothesis that β-catenin-dependent GS expression points to a Gln-addicted phenotype. In addition, the role of GS in the adaptation to Gln depletion of two other human cell models has been also assessed so as to achieve a general appraisal of the metabolic role of the enzyme under conditions of nutritional stress. Methods. Gln depletion was achieved with the bacterial enzyme Lasparaginase (ASNase), a drug employed in the treatment of acute lymphoblastic leukemia, and the irreversible GS inhibitor methionine-Lsulfoximine (MSO). We have evaluated ASNase and MSO effects on cell viability and mTOR activity in β-catenin-mutated HCC cell lines, in two GSnegative human oligodendroglioma cells, and in bone marrow mesenchymal stem cells (MSCs). Moreover, ASNase and MSO effects were also assessed on HCC xenograft models. Results. Gln depletion, obtained with ASNase and MSO, markedly hinders the proliferation of β-catenin-mutated, GS-positive, HCC cells in vitro and in vivo. The determination of mTOR activity in Gln-depleted HCC cells indicated that ASNase markedly inhibits the kinase, while MSO caused its paradoxical activation, suggesting that the GS inhibitor may deceive the intracellular amino acid sensors that regulate mTOR. ASNase causes massive cells death in GS-negative human oligodendroglioma cell lines, where MSO is ineffective. On the other hand, MSO prevents the adaptation of MSCs to Gln-depletion, suggesting that GS activity may contribute to the recently described trophic function of MSCs towards leukemic blasts. Conclusions. These results indicate a role of β-catenin mutations in promoting Gln addiction in HCC and suggest that pharmacological Gln depletion represents a metabolic approach for the therapy of β-catenin-mutated liver cancers. Moreover, GS activity seems crucial for adaptation to Gln shortage, not only in HCC cells, but also in MSCs and oligodendroglioma cells. These evidences suggest that GS constitute a useful diagnostic tool and/or therapeutic target in selected types of human tumors.
Introduzione. Le alterazioni metaboliche sono una caratteristica delle cellule tumorali, le quali devono sostenere un’attiva proliferazione senza incorrere in una carenza energetica. Pertanto, la ricerca di approcci metabolici che interferiscono con la crescita tumorale è attivamente perseguita. La maggior parte delle cellule tumorali è contraddistinta da un aumentato consumo di glucosio, necessario per rifornire il ciclo di Krebs di intermedi estratti a scopo biosintetico (anaplerosi). Tuttavia, a seconda delle mutazioni oncogeniche presenti nel fenotipo tumorale, altri nutrienti oltre al glucosio possono essere utilizzati a scopo anaplerotico. Tra essi spicca la glutamina (Gln), il più abbondante amminoacido nel sangue, precursore di altri aminoacidi, di nucleotidi e del glutatione nonché attivatore di mTOR. Tumori che utilizzano Gln a scopo anaplerotico hanno un aumentato fabbisogno di tale aminoacido e vengono perciò definiti “glutamine addicted”. Tuttavia non sono ancora stati identificati markers di “glutamine addiction” e, in particolare, il ruolo della Glutamina Sintetasi (GS), enzima chiave del metabolismo della Gln, non è ancora stato chiarito. L’espressione di GS è regolata a livello proteico dalla concentrazione intracellulare di Gln, ma, a livello trascrizionale, la sua espressione è dovuta all’oncogene β-catenina. Difatti l’iper-espressione di GS è un marker diagnostico di mutazione della β-catenina nel carcinoma epatocellulare (HCC), un tumore maligno del fegato con prognosi infausta. Pertanto l’espressione di GS causata dall’iperattivazione della β-catenina potrebbe indicare un metabolismo tumorale dipendente da Gln. Scopo della tesi. Lo scopo di questo studio è valutare gli effetti della deplezione di Gln in linee umane di HCC, per verificare l’ipotesi che iperespressione di GS dovuta a mutazioni di β-catenina possa essere un marker di “glutamine addiction”. Inoltre è stato valutato anche il ruolo di GS nell’adattamento alla deprivazione di Gln di altri due modelli cellulari umani, per ottenere una stima generale sul ruolo metabolico dell’enzima in condizioni di stress nutrizionale. Metodi. La deplezione di Gln è stata ottenuta combinando l’enzima batterico L-asparaginasi (ASNase), in uso nella terapia della leucemia linfoblastica acuta, con la metionina-L-sulfoximina (MSO), un inibitore irreversibile di GS. Sono stati valutati gli effetti di ASNase e MSO sulla vitalità cellulare e sulla attività di mTOR in linee tumorali umane di HCC mutate in β-catenina (in vitro e in xenografts in modelli murini), in due linee di oligodendroglioma umano e in cellule mesenchimali staminali (MSC) umane derivate dal midollo osseo di donatori. Risultati. Sia in vitro che in vivo, la deplezione di Gln ottenuta tramite ASNase e MSO, inibisce marcatamente la proliferazione delle linee cellulari mutate in β-catenina e positive per GS. Inoltre, mentre ASNase inibisce significativamente l’attività di mTOR, l’aggiunta di MSO, pur causando un’ulteriore diminuzione del contenuto intracellulare di Gln, determina un’attivazione paradossale della chinasi, suggerendo che l’inibitore di GS interagisca con dei sensori per aminoacidi a monte di mTOR. Nei modelli di oligodendroglioma umano GS-negativi ASNase causa una massiva morte cellulare, mentre l’aggiunta di MSO risulta inefficace. D’altra parte MSO previene l’adattamento delle MSC alla deplezione di Gln, suggerendo che GS possa contribuire alla funzione trofica, recentemente dimostrata, delle MSC nei confronti dei blasti leucemici. Conclusioni. I risultati ottenuti indicano un coinvolgimento delle mutazioni di β-catenina nel favorire un fenotipo neoplastico dipendente da Gln e dimostrano che la deplezione farmacologica di Gln rappresenta un approccio metabolico per la terapia dei tumori al fegato caratterizzati da mutazioni di β-catenina. Inoltre GS sembra necessaria per l’adattamento alla deplezione di Gln in tutti i modelli cellulari testati. Questi risultati suggeriscono che GS possa essere un mezzo diagnostico e/o un target terapeutico in determinati tipi di tumore.
A METABOLIC APPROACH FOR THE CONTROL OF GLUTAMINE DEPENDENT TUMORS
CHIU, MARTINA
2014
Abstract
Background. Deranged metabolism is a hallmark of cancer cells which need to sustain uncontrolled cell growth while maintaining a proper energy balance. Means to interfere with the cancer-associated metabolic alterations to control tumor cell proliferation are actively pursued. Most tumors rely on enhanced glucose consumption to supply Krebs cycle intermediates (a process called anaplerosis), which are continuously diverted to the macromolecular biosynthesis needed by proliferation. However, nutrients other than glucose may support anaplerosis in tumors, likely depending on the oncogenic mutations present in the particular type of cancer. Glutamine (Gln), the most abundant amino acid in blood, is a precursor of other amino acids (i.e. asparagine), nucleotides and glutathione, and stimulates mTOR. Tumors that rely on Gln instead of glucose for anaplerosis exhibit an enhanced requirement for the amino acid (“glutamine addiction”); however, reliable markers of “glutamine addiction” are still needed; in particular, the role of Glutamine Synthetase (GS), a key enzyme of Gln metabolism, has not been yet defined in this context. GS expression is known to be regulated at the protein level by intracellular Gln content, but, at transcriptional level, its expression is driven by the oncogene β-catenin. Consistently, its over-expression is a marker of β-catenin mutations in hepatocellular carcinoma (HCC), a liver cancer with poor prognosis. We have hypothesized that β-catenin-dependent GS expression may be a marker of a metabolic drift towards Gln-dependence and, hence, of Gln-addiction. Aim of the thesis. The purpose of this study is to investigate the effects of Gln depletion on human HCC cells so as to verify the hypothesis that β-catenin-dependent GS expression points to a Gln-addicted phenotype. In addition, the role of GS in the adaptation to Gln depletion of two other human cell models has been also assessed so as to achieve a general appraisal of the metabolic role of the enzyme under conditions of nutritional stress. Methods. Gln depletion was achieved with the bacterial enzyme Lasparaginase (ASNase), a drug employed in the treatment of acute lymphoblastic leukemia, and the irreversible GS inhibitor methionine-Lsulfoximine (MSO). We have evaluated ASNase and MSO effects on cell viability and mTOR activity in β-catenin-mutated HCC cell lines, in two GSnegative human oligodendroglioma cells, and in bone marrow mesenchymal stem cells (MSCs). Moreover, ASNase and MSO effects were also assessed on HCC xenograft models. Results. Gln depletion, obtained with ASNase and MSO, markedly hinders the proliferation of β-catenin-mutated, GS-positive, HCC cells in vitro and in vivo. The determination of mTOR activity in Gln-depleted HCC cells indicated that ASNase markedly inhibits the kinase, while MSO caused its paradoxical activation, suggesting that the GS inhibitor may deceive the intracellular amino acid sensors that regulate mTOR. ASNase causes massive cells death in GS-negative human oligodendroglioma cell lines, where MSO is ineffective. On the other hand, MSO prevents the adaptation of MSCs to Gln-depletion, suggesting that GS activity may contribute to the recently described trophic function of MSCs towards leukemic blasts. Conclusions. These results indicate a role of β-catenin mutations in promoting Gln addiction in HCC and suggest that pharmacological Gln depletion represents a metabolic approach for the therapy of β-catenin-mutated liver cancers. Moreover, GS activity seems crucial for adaptation to Gln shortage, not only in HCC cells, but also in MSCs and oligodendroglioma cells. These evidences suggest that GS constitute a useful diagnostic tool and/or therapeutic target in selected types of human tumors.File | Dimensione | Formato | |
---|---|---|---|
phd_unimi_R09183.pdf
Open Access dal 04/01/2015
Dimensione
7.66 MB
Formato
Adobe PDF
|
7.66 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/77759
URN:NBN:IT:UNIMI-77759