In this thesis, we studied the Hodge theory and deformation theory of nodal surfaces. We showed that nodal surfaces in the projective 3-space satisfy the infinitesimal Torelli property. We considered families of examples of even nodal surfaces, that is, those endowed with a double cover branched on the nodes. We gave a new geometrical construction of even 56-nodal sextic surfaces, while we proved, using existing constructions, that the sub-Hodge structure of type (1,26,1) on the double cover S of any even 40-nodal sextic surface cannot be simple. We also demonstrated ways to compute sheaves of differential forms on singular varieties using Saito's theory of mixed Hodge modules.

Deformations of nodal surfaces

ZHAO, YAN
2016

Abstract

In this thesis, we studied the Hodge theory and deformation theory of nodal surfaces. We showed that nodal surfaces in the projective 3-space satisfy the infinitesimal Torelli property. We considered families of examples of even nodal surfaces, that is, those endowed with a double cover branched on the nodes. We gave a new geometrical construction of even 56-nodal sextic surfaces, while we proved, using existing constructions, that the sub-Hodge structure of type (1,26,1) on the double cover S of any even 40-nodal sextic surface cannot be simple. We also demonstrated ways to compute sheaves of differential forms on singular varieties using Saito's theory of mixed Hodge modules.
1-dic-2016
Inglese
Hodge theory ; infinitesimal Torelli theorem ; even nodal surfaces ; mixed Hodge modules
VAN GEEMEN, LAMBERTUS
MASTROPIETRO, VIERI
Università degli Studi di Milano
File in questo prodotto:
File Dimensione Formato  
phd_unimi_R10646.pdf

accesso aperto

Dimensione 1.68 MB
Formato Adobe PDF
1.68 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/78505
Il codice NBN di questa tesi è URN:NBN:IT:UNIMI-78505