We study toposes of actions of monoids on sets. We begin with ordinary actions, producing a class of presheaf toposes which we characterize. As groundwork for considering topological monoids, we branch out into a study of supercompactly generated toposes (a class strictly larger than presheaf toposes). This enables us to efficiently study and characterize toposes of continuous actions of topological monoids on sets, where the latter are viewed as discrete spaces. Finally, we refine this characterization into necessary and sufficient conditions for a supercompactly generated topos to be equivalent to a topos of this form.
Toposes of monoid actions
ROGERS, MORGAN
2021
Abstract
We study toposes of actions of monoids on sets. We begin with ordinary actions, producing a class of presheaf toposes which we characterize. As groundwork for considering topological monoids, we branch out into a study of supercompactly generated toposes (a class strictly larger than presheaf toposes). This enables us to efficiently study and characterize toposes of continuous actions of topological monoids on sets, where the latter are viewed as discrete spaces. Finally, we refine this characterization into necessary and sufficient conditions for a supercompactly generated topos to be equivalent to a topos of this form.File | Dimensione | Formato | |
---|---|---|---|
Thesis_caricamento.pdf
accesso aperto
Dimensione
1.41 MB
Formato
Adobe PDF
|
1.41 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/78903
URN:NBN:IT:UNINSUBRIA-78903