A pillar for the modern study of theoretical physics is certainly quantum field theory (QFT), since an always increasing number of physical problems are formulated and approached according to QFT. Actually, more than a theory it is thought as a paradigm on top of which different physical theories are proposed and developed. One of these scenarios is the worldline formulation of QFT, which is the main subject of the present thesis. The worldline formalism allows to write QFT quantities of interest (propagators, effective actions and scattering amplitudes) in terms of quantum mechanical path integrals which ultimately correlate such observables to the behaviour of different quantum mechanical particles. These models, called sigma-models, have been extensivily studied for years from an analytical perpective, providing valid results, particularly when the particle is coupled to external fields, i.e. vector gauge fields, gravity, etc. In the presence of gravitational couplings, i.e. in curved spacetimes, the almost totality of analytic results involved a perturbative approach. In general, attempts to reach non-perturbative results have led to the development of numerical interpretations of the worldline formalism. The main candidate of these strategies is the so called Worldline Monte Carlo, for which several numerical algorithms have been developed: the key idea is to approximate the path integral of a point particle with a discrete set of discretized paths sampled numerically according to Monte Carlo based routines. In this thesis we will see this method in action, providing first a series of analytical calculations of some QFT relevant quantities, and then we will focus on the numerical part, that is computations based on the WLMC approach in flat and curved spaces.
Un pilastro dello studio moderno della fisica teorica è certamente la teoria quantistica dei campi, poiché un numero sempre maggiore di problemi fisici sono formulati e affrontati secondo la QFT. Di fatti, essa è pensata come un paradigma rispetto al quale diverse teorie fisiche sono proposte e sviluppate. Uno di questi scenari è quello della formulazione a linea di mondo della QFT, che costituisce il soggetto principale di questa tesi. Il formalismo a linea di mondo permette di esprimere quantità di interesse della QFT (propagatori, azioni efficaci, ampiezze di scattering) in termini di integrali sui cammini quantomeccanici che correlano tali osservabili al comportamento di diverse particelle quantomeccaniche. Questi modelli, chiamati modelli-sigma, sono largamente studiati da anni da una prospettiva analitica, fornendo validi risultati, in particolare quando la particella è accoppiata a compi esterni, come campi di gauge, la gravità, ecc. In presenza di accommpiamenti con il campo gravitazionale, cioè nello spazio curvo, la quasi totalità di risultati analitici ha coinvolto un approccio perturbativo. In generale, tentativi di ottenere risultati non perturbativi hanno portato allo sviluppo di interpretazioni numeriche del formalismo a linea di mondo. Il condidato principale di queste strategie è il cosiddetto Worldline Monte Carlo (WLMC), per cui diversi algoritmi numerici sono stati sviluppati: l'idea chiave è approssimare l'integrale sui cammini di una particella puntiforme con un insieme discreto di cammini discretizzati e campionati numericamente secondo routine Monte Carlo. In questa tesi vedremo questo metodo in azione, fornendo prima una serie di calcoli analitici di alcune rilevanti quantità di QFT, per poi focalizzarci sulla parte numerica, cioè su calcoli basati sull'approccio WLMC in spazi piatti e curvi.
Approcci numerici alla teoria quantistica dei campi in spazio curvo
MURATORI, MAURIZIO
2022
Abstract
A pillar for the modern study of theoretical physics is certainly quantum field theory (QFT), since an always increasing number of physical problems are formulated and approached according to QFT. Actually, more than a theory it is thought as a paradigm on top of which different physical theories are proposed and developed. One of these scenarios is the worldline formulation of QFT, which is the main subject of the present thesis. The worldline formalism allows to write QFT quantities of interest (propagators, effective actions and scattering amplitudes) in terms of quantum mechanical path integrals which ultimately correlate such observables to the behaviour of different quantum mechanical particles. These models, called sigma-models, have been extensivily studied for years from an analytical perpective, providing valid results, particularly when the particle is coupled to external fields, i.e. vector gauge fields, gravity, etc. In the presence of gravitational couplings, i.e. in curved spacetimes, the almost totality of analytic results involved a perturbative approach. In general, attempts to reach non-perturbative results have led to the development of numerical interpretations of the worldline formalism. The main candidate of these strategies is the so called Worldline Monte Carlo, for which several numerical algorithms have been developed: the key idea is to approximate the path integral of a point particle with a discrete set of discretized paths sampled numerically according to Monte Carlo based routines. In this thesis we will see this method in action, providing first a series of analytical calculations of some QFT relevant quantities, and then we will focus on the numerical part, that is computations based on the WLMC approach in flat and curved spaces.File | Dimensione | Formato | |
---|---|---|---|
PHD_Thesis_MM.pdf
accesso aperto
Dimensione
4.35 MB
Formato
Adobe PDF
|
4.35 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/78935
URN:NBN:IT:UNIMORE-78935