Friction is the resistance force to motion between two surfaces that slide or roll over each other. It is a common microscopic phenomenon, the origin of which is to be found in the adhesive interaction forces that are generated between the surfaces in contact. Dissipations due to friction cause huge energy and environmental costs in various sectors, including transport and industry. In fact, it is estimated that nearly a third of the energy produced by fossil fuels to power vehicles is spent on overcoming friction. Improving the tribology of surfaces is expected to ensure a 40% reduction in energy waste within the next 15 years. The study of friction requires a deep understanding of the microscopic phenomena that develop at the surface level. First principle simulations allow studying the electronic and chemical properties of materials with a high degree of accuracy, providing a way to understand tribological events. Over the years, several methods based on first-principle calculations have been developed to study the properties of materials at the atomic level. Among all, the use of these simulations in combination with a high-throughput approach has been spreading rapidly in recent decades. This method aims to simulate thousands of materials in parallel to select from a small set of candidates with specific physicochemical properties from the initial pool. The goal is to accelerate the discovery and dissemination of new materials for science and technology. This thesis explores the implementation and use of several innovative computational techniques in the field of tribology. The work mainly focuses on the description of a software designed to automate the research activity in nanotribology and carry out high-throughput studies on the properties of the interfaces. In its current implementation, the software allows you to combine any pair of crystalline materials, which can differ in both composition and orientation, and study their tribological properties, such as adhesion and shear strength. The program was used to study the tribological properties between two solid surfaces in contact by carrying out a screening on the elements of the periodic table. The study allows to estimate the relationship between adhesion and strength of an interface, also allowing to identify a way to assess the failure mode of materials. Another important result of this work is the realization of an innovative theoretical model that combines the traditional GFMD technique with first-principle molecular dynamics. This hybrid method improves the accuracy of atomistic simulations by considering the role of the elastic properties of solids and the propagation of vibrational waves in determining the friction of atomic structures. The program was used to calculate the friction properties of a diamond-diamond interface, considering different degrees of surface passivation. Finally, this work reports a study conducted on the lubricating properties of phosphorene, an innovative two-dimensional material based on phosphorus. First, two contact phosphorene layers were investigated. This made it possible to identify the presence of a super lubricating phase for a particular orientation of the layers. This work constitutes a first important step in the possible design of phosphorene-based lubricants. Subsequently, the ability of phosphorene to lubricate an iron substrate was evaluated, comparing the results obtained with calculations made for graphene and MoS2.
L'attrito è la forza di resistenza al moto che si sviluppa tra due superfici che scorrono o rotolano l'una sull'altra. Si tratta di un fenomeno microscopico comune, la cui origine è da ricercare nelle forze di interazione adesive che si generano tra le superfici a contatto. Le dissipazioni dovute all'attrito causano ingenti costi energetici e ambientali in diversi settori, tra cui quello del trasporto e dell'industria. Si stima infatti che quasi un terzo dell'energia prodotta dai combustibili fossili per alimentare i veicoli venga spesa per vincere l'attrito. Si prevede che migliorare la tribologia delle superfici possa garantire una riduzione degli sprechi energetici pari al 40% entro i prossimi 15 anni. Lo studio dell'attrito richiede una profonda comprensione dei fenomeni microscopici che si sviluppano a livello della superficie. Le simulazioni da principi primi consentono di studiare le proprietà elettroniche e chimiche dei materiali con un alto grado di accuratezza, fornendo un modo per comprendere gli eventi tribologici. Nel corso degli anni, sono stati sviluppati diversi metodi basati sui calcoli a principi primi per studiare le proprietà dei materiali a livello atomico. Tra tutti, l’utilizzo di queste simulazioni in combinazione con un approccio high-throughput si sta diffondendo rapidamente negli ultimi decenni. Lo scopo di questo metodo consiste nel simulare migliaia di materiali in parallelo, in modo da selezionare tra essi un piccolo insieme di candidati con proprietà fisico-chimiche specifiche. L'obiettivo è accelerare la scoperta e la diffusione di nuovi materiali per la scienza e la tecnologia. Questa tesi esplora l'implementazione e l'utilizzo di diverse tecniche computazionali innovative nell'ambito della tribologia. Il lavoro si concentra principalmente sulla descrizione di un software realizzato per automatizzare l'attività di ricerca in nanotribologia ed effettuare studi high-throughput sulle proprietà delle interfacce. Nella sua attuale implementazione, il software consente di combinare qualsiasi coppia di materiali cristallini, che possono differire sia per composizione sia per orientazione, e studiare le loro proprietà tribologiche, come l'adesione e lo shear strength. Il programma è stato utilizzato per studiare le proprietà tribologiche tra due superfici solide a contatto, effettuando uno screening sugli elementi della tavola periodica. Lo studio ha permesso di stimare la relazione tra adesione e resistenza di una interfaccia, permettendo inoltre di identificare un modo per stimare la modalità di failure dei materiali. Un altro importante risultato di questo lavoro è la realizzazione di un modello teorico innovativo che combina la tradizionale tecnica GFMD alla dinamica molecolare a principi primi. Questo metodo ibrido migliora l'accuratezza delle simulazioni atomistiche tenendo conto del ruolo delle proprietà elastiche dei solidi e la propagazione di onde vibrazionali nel determinare l'attrito delle strutture atomiche. Il programma è stato utilizzato per calcolare le proprietà di attrito di una interfaccia diamante-diamante, considerando diversi gradi di passivazione delle superfici. Infine, questo lavoro riporta uno studio condotto sulle proprietà lubrificanti del fosforene, un materiale innovativo bidimensionale a base di fosforo. Dapprima sono stati studiati due strati di fosforene a contatto. Ciò ha permesso di individuare la presenza di una fase super lubrificante per una particolare orientazione degli strati. Tale lavoro costituisce un primo importante passo nella possibile ideazione di lubrificanti a base di fosforene. Successivamente, è stata valutata la capacità del fosforene di lubrificare un substrato di ferro, confrontando i risultati ottenuti con calcoli effettuati per grafene e MoS2.
Progettazione e applicazione di strumenti computazionali per studiare le interfacce solide e i materiali per ridurre l'attrito
LOSI, GABRIELE
2022
Abstract
Friction is the resistance force to motion between two surfaces that slide or roll over each other. It is a common microscopic phenomenon, the origin of which is to be found in the adhesive interaction forces that are generated between the surfaces in contact. Dissipations due to friction cause huge energy and environmental costs in various sectors, including transport and industry. In fact, it is estimated that nearly a third of the energy produced by fossil fuels to power vehicles is spent on overcoming friction. Improving the tribology of surfaces is expected to ensure a 40% reduction in energy waste within the next 15 years. The study of friction requires a deep understanding of the microscopic phenomena that develop at the surface level. First principle simulations allow studying the electronic and chemical properties of materials with a high degree of accuracy, providing a way to understand tribological events. Over the years, several methods based on first-principle calculations have been developed to study the properties of materials at the atomic level. Among all, the use of these simulations in combination with a high-throughput approach has been spreading rapidly in recent decades. This method aims to simulate thousands of materials in parallel to select from a small set of candidates with specific physicochemical properties from the initial pool. The goal is to accelerate the discovery and dissemination of new materials for science and technology. This thesis explores the implementation and use of several innovative computational techniques in the field of tribology. The work mainly focuses on the description of a software designed to automate the research activity in nanotribology and carry out high-throughput studies on the properties of the interfaces. In its current implementation, the software allows you to combine any pair of crystalline materials, which can differ in both composition and orientation, and study their tribological properties, such as adhesion and shear strength. The program was used to study the tribological properties between two solid surfaces in contact by carrying out a screening on the elements of the periodic table. The study allows to estimate the relationship between adhesion and strength of an interface, also allowing to identify a way to assess the failure mode of materials. Another important result of this work is the realization of an innovative theoretical model that combines the traditional GFMD technique with first-principle molecular dynamics. This hybrid method improves the accuracy of atomistic simulations by considering the role of the elastic properties of solids and the propagation of vibrational waves in determining the friction of atomic structures. The program was used to calculate the friction properties of a diamond-diamond interface, considering different degrees of surface passivation. Finally, this work reports a study conducted on the lubricating properties of phosphorene, an innovative two-dimensional material based on phosphorus. First, two contact phosphorene layers were investigated. This made it possible to identify the presence of a super lubricating phase for a particular orientation of the layers. This work constitutes a first important step in the possible design of phosphorene-based lubricants. Subsequently, the ability of phosphorene to lubricate an iron substrate was evaluated, comparing the results obtained with calculations made for graphene and MoS2.File | Dimensione | Formato | |
---|---|---|---|
GABRIELE_LOSI_PhD_THESIS.pdf
embargo fino al 03/04/2025
Dimensione
41.69 MB
Formato
Adobe PDF
|
41.69 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/78953
URN:NBN:IT:UNIMORE-78953