There is an urgent and growing need for new antibiotics to treat infections caused by emerging multi-resistant bacterial pathogens and to maintain the advanced medical procedures that we now take for granted. Majority of newly discovered antibiotics are secondary metabolites (also named specialized metabolites) produced from genera belonging to the Actinobacteria phylum, which includes high G-C soil-dwelling mycelial organisms with sizable genomes (traditionally named actinomycetes). Unfortunately, after the fruitful period at the second half of 20th century, the chance of finding new antibiotics started to decrease, and it became more and more evident that new methods for accessing and screening still-untapped sources for biologically-active microbial metabolites should be invented. Till then, the large majority of antibiotics were discovered mainly from actinobacteria belonging to Streptomyces genus, apparently the most abundant in soil, and the easier-to isolate and -to cultivate among actinomycetes. Thus, unexplored microorganisms (not coming from Streptomyces genus) – the so-named “rare” or “uncommon” actinomycetes –were discovered as a rather untapped source of chemically diverse specialized metabolites. These bacteria are defined as the actinomycete strains less frequently isolated than Streptomyces spp., even though they may not actually be so rare in the environment. Undoubtfully, we know less on how to handle them and they tend to be more recalcitrant to classical cultivation and manipulation methods. Contrary to better-known Streptomyces spp., genetics tools are still much less developed for “rare” actinomycetes today. Among the most relevant antibiotics produced by “rare” actinomycetes are glycopeptides (GPAs) which are drugs of last resort against severe infections caused by multidrug-resistant Gram-positive pathogens. Clinically important GPAs include first-generation vancomycin and teicoplanin and second-generation antibiotics telavancin, oritavancin and dalbavancin. As for other specialized metabolites, the biosynthetic routes leading to the production of GPAs are encoded within an assemblage of genes which are grouped in biosynthetic gene clusters (BGCs). BGCs contain not only the biosynthetic genes, but also regulatory, resistance or transport genes. In my PhD thesis, I have used recent technologies for rapid bacterial genome sequencing, advanced genetic engineering and bioinformatics prediction tools to identify, characterize and improve the production of GPAs in “rare” actinomycetes. First, I investigated the role of the positive regulatory genes involved in the biosynthesis of clinically relevant GPAs teicoplanin, produced by Actinoplanes teichomyceticus and A40926 from Nonomuraea gerenzanensis, this last the precursor of the second generation dalbavancin. To perform these studies, I had to develop proper genetic tools to manipulate the “rare” actinomycetes producing these molecules, i.e. selecting the best promoter for heterologous gene expression from a collection of promoter-probe vectors. One final outcome of such work was the improvement of the production yield for teicoplanin and A40926 by means of genetic engineering, contributing to a possible price reduction of these molecules in the future. In a following part of my work, the sequencing and analysis of genomes of “rare” actinomycetes producing putative GPAs allowed the identification of a new BGC for the synthesis of a novel antibiotic. I was in fact part of the international team which identified a new A40926-like antibiotic produced by Nonomuraea coxensis DSM 45129, named A50926. Finally, I analysed more than 7000 genomes of actinobacteria available in public databases to map GPA resistance genes and GPA biosynthetic gene clusters. Our bioinformatic analysis revealed how these resistance genes are widespread within Actinobacteria phylum and pointed to further novel GPA BGCs.
Come noto, vi è un crescente bisogno di nuovi antibiotici per curare le infezioni causate da batteri patogeni multi-resistenti e per garantire le pratiche mediche avanzate proprie della medicina moderna. La maggior parte degli antibiotici scoperti sino ad ora sono metaboliti secondari (anche detti specializzati) prodotti da microrganismi miceliali del suolo ad alto contenuto in G-C appartenenti al phylum Actinobacteria e caratterizzati da genomi di taglia significativa (chiamati tradizionalmente attinomiceti). Sfortunatamente, dopo la seconda metà del XX secolo, pochissimi soni i nuovi antibitoici a diposizione ed è ad oggi necessario sviluppare nuovi metodi per la scoperta e sviluppo di nuove molecole di origine naturale. La grande maggioranza degli antibiotici noti è prodotta principalmente dagli actinobatteri appartenenti al genere Streptomyces, il più abbondante nel suolo, ed il più facile da isolare e coltivare tra gli attinomiceti. Pertanto, i microrganismi inesplorati (non provenienti dal genere Streptomyces) - i cosiddetti attinomiceti "rari" o "non comuni" - rappresentano una fonte ancora inesplorata di metaboliti specializzati chimicamente diversi. Da precisare che questi batteri sono definiti “rari” in quanto isolati meno frequentemente degli Streptomyces spp., anche se potrebbero non essere così rari in ambiente. Indubbiamente, la nostra conosenza su come manipolare gli attinomiceti “rari” è ancora molto scarsa ed essi tendono ad essere recalcitranti ai metodi classici di coltivazione e modifica genetica. Tra gli antibiotici più rilevanti prodotti dagli attinomiceti “rari” vi sono i glicopeptidi (GPA) che sono farmaci utilizzati contro le infezioni gravi causate da patogeni Gram-positivi multi-resistenti. I GPAs di prima generazione includono vancomicina e teicoplanina, mentre gli antibiotici di seconda generazione sono telavancina, oritavancina e dalbavancina. Come per altri metaboliti secondari, le vie biosintetiche che portano alla produzione di GPA sono codificate da un insieme di geni che sono raggruppati in cluster (Biosynthetic Gene Cluster, BGC). I BGC contengono non solo geni deputati alla biosintesi, ma anche i geni con funzione regolatoria, di resistenza o di trasporto. Nella mia tesi di dottorato, ho utilizzato le tecnologie più recenti per il sequenziamento del genoma microbico, l’ingegneria genetica e la bioinformatica con lo scopo di identificare, caratterizzare e migliorare la produzione di GPA in attinomiceti "rari". In primo luogo, ho studiato il ruolo dei geni regolatori positivi coinvolti nella biosintesi di GPA clinicamente rilevanti, quali la teicoplanina prodotta da Actinoplanes teichomyceticus e l’A40926 (quest'ultimo precursore della dalbavancina) da Nonomuraea gerenzanensis. Ho pertanto sviluppato strumenti genetici adeguati per manipolare gli attinomiceti "rari" che producono queste molecole, ossia ad esempio selezionando il miglior promotore per l'espressione di geni eterologhi. Il risultato finale di tale lavoro è stato il miglioramento della produzione di teicoplanina e A40926, contribuendo ad una possibile riduzione del prezzo di queste molecole in futuro. Nella seconda parte del mio lavoro, il sequenziamento e l'analisi dei genomi di attinomiceti "rari”, produttori di putativi GPA, ha permesso l'identificazione di un nuovo BGC per la sintesi di un nuovo antibiotico simile all'A40926, prodotto da Nonomuraea coxensis DSM 45129, chiamato A50926. Infine, ho analizzato più di 7000 genomi di actinobatteri disponibili in database pubblici per mappare i geni di resistenza ai GPA spesso associati ai relativi clusters biosintetici. Questa analisi bioinformatica ha rivelato come i geni di resistenza siano diffusi all'interno del phylum degli Actinobacteria e rapresenta una chiave per trovare nuovi BGC e quindi in futuro nuovi GPA.
Biosintesi, autoresistenza e regolazione degli antibiotici glicopeptidici in actinomiceti produttori
ANDREO VIDAL, ANDRES
2022
Abstract
There is an urgent and growing need for new antibiotics to treat infections caused by emerging multi-resistant bacterial pathogens and to maintain the advanced medical procedures that we now take for granted. Majority of newly discovered antibiotics are secondary metabolites (also named specialized metabolites) produced from genera belonging to the Actinobacteria phylum, which includes high G-C soil-dwelling mycelial organisms with sizable genomes (traditionally named actinomycetes). Unfortunately, after the fruitful period at the second half of 20th century, the chance of finding new antibiotics started to decrease, and it became more and more evident that new methods for accessing and screening still-untapped sources for biologically-active microbial metabolites should be invented. Till then, the large majority of antibiotics were discovered mainly from actinobacteria belonging to Streptomyces genus, apparently the most abundant in soil, and the easier-to isolate and -to cultivate among actinomycetes. Thus, unexplored microorganisms (not coming from Streptomyces genus) – the so-named “rare” or “uncommon” actinomycetes –were discovered as a rather untapped source of chemically diverse specialized metabolites. These bacteria are defined as the actinomycete strains less frequently isolated than Streptomyces spp., even though they may not actually be so rare in the environment. Undoubtfully, we know less on how to handle them and they tend to be more recalcitrant to classical cultivation and manipulation methods. Contrary to better-known Streptomyces spp., genetics tools are still much less developed for “rare” actinomycetes today. Among the most relevant antibiotics produced by “rare” actinomycetes are glycopeptides (GPAs) which are drugs of last resort against severe infections caused by multidrug-resistant Gram-positive pathogens. Clinically important GPAs include first-generation vancomycin and teicoplanin and second-generation antibiotics telavancin, oritavancin and dalbavancin. As for other specialized metabolites, the biosynthetic routes leading to the production of GPAs are encoded within an assemblage of genes which are grouped in biosynthetic gene clusters (BGCs). BGCs contain not only the biosynthetic genes, but also regulatory, resistance or transport genes. In my PhD thesis, I have used recent technologies for rapid bacterial genome sequencing, advanced genetic engineering and bioinformatics prediction tools to identify, characterize and improve the production of GPAs in “rare” actinomycetes. First, I investigated the role of the positive regulatory genes involved in the biosynthesis of clinically relevant GPAs teicoplanin, produced by Actinoplanes teichomyceticus and A40926 from Nonomuraea gerenzanensis, this last the precursor of the second generation dalbavancin. To perform these studies, I had to develop proper genetic tools to manipulate the “rare” actinomycetes producing these molecules, i.e. selecting the best promoter for heterologous gene expression from a collection of promoter-probe vectors. One final outcome of such work was the improvement of the production yield for teicoplanin and A40926 by means of genetic engineering, contributing to a possible price reduction of these molecules in the future. In a following part of my work, the sequencing and analysis of genomes of “rare” actinomycetes producing putative GPAs allowed the identification of a new BGC for the synthesis of a novel antibiotic. I was in fact part of the international team which identified a new A40926-like antibiotic produced by Nonomuraea coxensis DSM 45129, named A50926. Finally, I analysed more than 7000 genomes of actinobacteria available in public databases to map GPA resistance genes and GPA biosynthetic gene clusters. Our bioinformatic analysis revealed how these resistance genes are widespread within Actinobacteria phylum and pointed to further novel GPA BGCs.File | Dimensione | Formato | |
---|---|---|---|
Andr?s_Andreo_Vidal_thesis pdfA.pdf
Open Access dal 18/09/2022
Dimensione
38.01 MB
Formato
Adobe PDF
|
38.01 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/78971
URN:NBN:IT:UNINSUBRIA-78971