This work originates from the growing interest of the medical imaging community in the application of machine learning techniques and, from deep learning to improve the accuracy of cancerscreening. The thesis is structured into two different tasks. In the first part, magnetic resonance images were analysed in order to support clinical experts in the treatment of patients with brain tumour metastases (BM). The main topic related to this study was to investigate whether BM segmentation may be approached successfully by two supervised ML classifiers belonging to feature-based and deep learning approaches, respectively. SVM and V-Net Convolutional Neural Network model are selected from the literature as representative of the two approaches. The second task related to this thesisis illustrated the development of a deep learning study aimed to process and classify lesions in mammograms with the use of slender neural networks. Mammography has a central role in screening and diagnosis of breast lesions. Deep Convolutional Neural Networks have shown a great potentiality to address the issue of early detection of breast cancer with an acceptable level of accuracy and reproducibility. A traditional convolution network was compared with a novel one obtained making use of much more efficient depth wise separable convolution layers. As a final goal to integrate the system developed in clinical practice, for both fields studied, all the Medical Imaging and Pattern Recognition algorithmic solutions have been integrated into a MATLAB® software package
Investigating the role of machine learning and deep learning techniques in medical image segmentation
GONELLA, GLORIA
2020
Abstract
This work originates from the growing interest of the medical imaging community in the application of machine learning techniques and, from deep learning to improve the accuracy of cancerscreening. The thesis is structured into two different tasks. In the first part, magnetic resonance images were analysed in order to support clinical experts in the treatment of patients with brain tumour metastases (BM). The main topic related to this study was to investigate whether BM segmentation may be approached successfully by two supervised ML classifiers belonging to feature-based and deep learning approaches, respectively. SVM and V-Net Convolutional Neural Network model are selected from the literature as representative of the two approaches. The second task related to this thesisis illustrated the development of a deep learning study aimed to process and classify lesions in mammograms with the use of slender neural networks. Mammography has a central role in screening and diagnosis of breast lesions. Deep Convolutional Neural Networks have shown a great potentiality to address the issue of early detection of breast cancer with an acceptable level of accuracy and reproducibility. A traditional convolution network was compared with a novel one obtained making use of much more efficient depth wise separable convolution layers. As a final goal to integrate the system developed in clinical practice, for both fields studied, all the Medical Imaging and Pattern Recognition algorithmic solutions have been integrated into a MATLAB® software packageFile | Dimensione | Formato | |
---|---|---|---|
PhD_Thesis_Gloria_Gonella_pdfa_compresso_pdfa.pdf
accesso aperto
Dimensione
2.8 MB
Formato
Adobe PDF
|
2.8 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/79110
URN:NBN:IT:UNINSUBRIA-79110