The neural machinery underlying sensory and motor processes in the primate brain remain largely unclear. Decades of neurophysiological literature evidenced the presence of distinct neuronal properties in many nodes of the cortical grasping network, from purely motor neurons encoding motor goals to sensorimotor neurons responsive to visually presented objects, observed actions or both. The attribution of these functional properties to specific neuronal classes, such as inhibitory interneurons or pyramidal neurons, would be crucial to achieve a better understanding of the motor-based perceptual and cognitive functions stemming from the inner organization of the motor system. To date, several studies showed that cortical neurons can be identified by jointly considering a variety of features of their spike waveform and firing properties, but the specific relation between physiologically characterized neuronal classes and their coding properties remains unclear, especially in areas of the primates’ motor system. To address this issue, here we studied the features of extracellularly recorded spikes of 355 well-isolated single neurons. Neurons were sampled from 5 hemispheres of 3 macaque monkeys while they performed or observed an experimenter performing, a reaching-grasping go/no-go task with three different objects as targets. Single neuron activity was recorded from anterior intraparietal area AIP (n=86), ventral premotor area F5 (n=106) and pre-supplementary motor area F6 (n=163). First, we performed an unsupervised clustering of spike waveforms that reliably dissociated 3 clusters. We found that physiologically-identified classes of cells, unevenly distributed across the investigated areas, carry distinct visuomotor signals. Broadly spiking neurons are prevalent in area F6 and exhibit a balanced amount of facilitated and suppressed activity during action execution and observation. In contrast, narrow spiking neurons are mostly facilitated by visual signals and show greater mutual modulation of their motor and visual response during one’s own and others’ action, particularly in areas AIP and F5. These findings shed light on the cellular mechanisms underlying local processing of sensorimotor information for planning and executing grasping actions and for processing others’ observed action. Further studies may unravel the contribution of larger cortico-subcortical brain network to the mechanisms elucidated by the present work.

I meccanismi neurali che sottendono i processi sensoriali e motori nel cervello dei primati non sono ancora stati chiariti. Decenni di letteratura neurofisiologica evidenziano la presenza di distinte proprietà neuronali in molti nodi dei circuiti corticali per l’afferramento, dai neuroni puramente motori che codificano lo scopo a quelli sensori-motori che rispondono alla presentazione visiva di oggetti, azioni o entrambi. L’attribuzione di queste proprietà funzionali a specifiche classi neuronali, come agli interneuroni inibitori o ai neuroni piramidali, sarebbe fondamentale per comprendere al meglio le funzioni cognitive e percettive che emergono dalla organizzazione intrinseca del sistema motorio. Ad oggi, molti studi mostrano che i neuroni corticali possono essere identificati prendendo in considerazione le diverse caratteristiche della loro forma d’onda e delle loro proprietà di scarica. Tuttavia, la specifica relazione tra classi neuronali identificate fisiologicamente e le loro proprietà di codifica resta ancora da chiarire, specialmente nelle aree appartenenti al sistema motorio dei primati. Per indagare questo problema abbiamo studiato le caratteristiche dei potenziali d’azione di 355 singoli neuroni ben isolati registrati extracellularmente. I neuroni sono stati registrati in 5 emisferi di tre scimmie macaco mentre svolgevano un compito di raggiungimento e afferramento di tipo go/nogo con tre differenti oggetti bersaglio, e mentre osservavano uno sperimentatore svolgere lo stesso compito. L’attività dei singoli neuroni è stata registrata dall’area intraparietale anteriore AIP (n=86), dall’area premotoria ventrale F5 (n=106) e dall’area pre-supplementare motoria F6 (n=163). Inizialmente abbiamo suddiviso tutte le forme d’onda registrate nelle tre aree in 3 gruppi attraverso una procedura di clustering non supervisionato. Queste tre classi di neuroni presentavano caratteristiche fisiologiche diverse e non si distribuivano uniformemente tra le aree. Nell’ area F6 prevalevano cellule con forma d’onda ampia e il numero di neuroni facilitati e inibiti era bilanciato sia durante il compito di esecuzione sia durante quello di osservazione. Al contrario, i neuroni con forma d’onda stretta risultavano più facilitati dai segnali visivi e dotati di una maggiore modulazione visuo-motoria congiunta sia quando l’azione veniva compiuta sia quando veniva osservata, soprattutto nelle are AIP e F5. Questi risultati chiariscono i meccanismi cellulari alla base dell'elaborazione locale delle informazioni sensori-motorie per la pianificazione, l'esecuzione e l’osservazione di azioni di prensione. Ulteriori studi potrebbero rilevare il contributo di reti cortico-sottocorticali più ampie ai meccanismi chiariti nel presente lavoro.

Proprietà sensoriali e motorie in classi neuronali fisiologicamente identificate in diverse aree dei circuiti parieto-frontali per afferramento.

FERRONI, CAROLINA GIULIA
2020

Abstract

The neural machinery underlying sensory and motor processes in the primate brain remain largely unclear. Decades of neurophysiological literature evidenced the presence of distinct neuronal properties in many nodes of the cortical grasping network, from purely motor neurons encoding motor goals to sensorimotor neurons responsive to visually presented objects, observed actions or both. The attribution of these functional properties to specific neuronal classes, such as inhibitory interneurons or pyramidal neurons, would be crucial to achieve a better understanding of the motor-based perceptual and cognitive functions stemming from the inner organization of the motor system. To date, several studies showed that cortical neurons can be identified by jointly considering a variety of features of their spike waveform and firing properties, but the specific relation between physiologically characterized neuronal classes and their coding properties remains unclear, especially in areas of the primates’ motor system. To address this issue, here we studied the features of extracellularly recorded spikes of 355 well-isolated single neurons. Neurons were sampled from 5 hemispheres of 3 macaque monkeys while they performed or observed an experimenter performing, a reaching-grasping go/no-go task with three different objects as targets. Single neuron activity was recorded from anterior intraparietal area AIP (n=86), ventral premotor area F5 (n=106) and pre-supplementary motor area F6 (n=163). First, we performed an unsupervised clustering of spike waveforms that reliably dissociated 3 clusters. We found that physiologically-identified classes of cells, unevenly distributed across the investigated areas, carry distinct visuomotor signals. Broadly spiking neurons are prevalent in area F6 and exhibit a balanced amount of facilitated and suppressed activity during action execution and observation. In contrast, narrow spiking neurons are mostly facilitated by visual signals and show greater mutual modulation of their motor and visual response during one’s own and others’ action, particularly in areas AIP and F5. These findings shed light on the cellular mechanisms underlying local processing of sensorimotor information for planning and executing grasping actions and for processing others’ observed action. Further studies may unravel the contribution of larger cortico-subcortical brain network to the mechanisms elucidated by the present work.
2-ott-2020
Inglese
I meccanismi neurali che sottendono i processi sensoriali e motori nel cervello dei primati non sono ancora stati chiariti. Decenni di letteratura neurofisiologica evidenziano la presenza di distinte proprietà neuronali in molti nodi dei circuiti corticali per l’afferramento, dai neuroni puramente motori che codificano lo scopo a quelli sensori-motori che rispondono alla presentazione visiva di oggetti, azioni o entrambi. L’attribuzione di queste proprietà funzionali a specifiche classi neuronali, come agli interneuroni inibitori o ai neuroni piramidali, sarebbe fondamentale per comprendere al meglio le funzioni cognitive e percettive che emergono dalla organizzazione intrinseca del sistema motorio. Ad oggi, molti studi mostrano che i neuroni corticali possono essere identificati prendendo in considerazione le diverse caratteristiche della loro forma d’onda e delle loro proprietà di scarica. Tuttavia, la specifica relazione tra classi neuronali identificate fisiologicamente e le loro proprietà di codifica resta ancora da chiarire, specialmente nelle aree appartenenti al sistema motorio dei primati. Per indagare questo problema abbiamo studiato le caratteristiche dei potenziali d’azione di 355 singoli neuroni ben isolati registrati extracellularmente. I neuroni sono stati registrati in 5 emisferi di tre scimmie macaco mentre svolgevano un compito di raggiungimento e afferramento di tipo go/nogo con tre differenti oggetti bersaglio, e mentre osservavano uno sperimentatore svolgere lo stesso compito. L’attività dei singoli neuroni è stata registrata dall’area intraparietale anteriore AIP (n=86), dall’area premotoria ventrale F5 (n=106) e dall’area pre-supplementare motoria F6 (n=163). Inizialmente abbiamo suddiviso tutte le forme d’onda registrate nelle tre aree in 3 gruppi attraverso una procedura di clustering non supervisionato. Queste tre classi di neuroni presentavano caratteristiche fisiologiche diverse e non si distribuivano uniformemente tra le aree. Nell’ area F6 prevalevano cellule con forma d’onda ampia e il numero di neuroni facilitati e inibiti era bilanciato sia durante il compito di esecuzione sia durante quello di osservazione. Al contrario, i neuroni con forma d’onda stretta risultavano più facilitati dai segnali visivi e dotati di una maggiore modulazione visuo-motoria congiunta sia quando l’azione veniva compiuta sia quando veniva osservata, soprattutto nelle are AIP e F5. Questi risultati chiariscono i meccanismi cellulari alla base dell'elaborazione locale delle informazioni sensori-motorie per la pianificazione, l'esecuzione e l’osservazione di azioni di prensione. Ulteriori studi potrebbero rilevare il contributo di reti cortico-sottocorticali più ampie ai meccanismi chiariti nel presente lavoro.
Singoli neuroni; Macaco; Forme d'onda; Parieto-Frontale; Elettrofisiologia
BONINI, Luca
ZOLI, Michele
Università degli studi di Modena e Reggio Emilia
File in questo prodotto:
File Dimensione Formato  
PhD_Thesis_CarolinaGiuliaFerroni.pdf

accesso aperto

Dimensione 4.32 MB
Formato Adobe PDF
4.32 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/79154
Il codice NBN di questa tesi è URN:NBN:IT:UNIMORE-79154