The annual size of the Global DataSphere (the total amount of data created across the world) has experienced an exponential increase during the last decade, and it will exceed 150 trillion of gigabytes within 2025. Storage, transfer and elaboration of data became one of the most appealing targets in emerging fields such as quantum technologies and spintronics (spin electronics). A primary goal is the control of magnetic properties and spin at the atomic and molecular level. Interesting are specific nanostructures called Single-Molecule Magnets (SMMs), which possess similar magnetic properties to those of bulk magnets but of pure molecular origin. SMMs can feature magnetic bistability and long relaxation times, which make them attractive to be implemented as single bits. Their physical properties can be tuned by chemical design. Iron(II)-based Extended Metal Atom Chains (EMACs) are appealing synthetic targets as SMMs, because of the large spin and magnetic anisotropy of high-spin iron(II). EMACs are linear arrays of at least 3 metal ions wrapped together by polydentate organic ligands, which promote short separations between the metal centers and, sometimes, metal-metal bonds. However, these compounds proved to be very elusive, due to the exceeding tendency of iron(II) to undergo oxidation and hydrolysis processes. In fact, before our report of a tetrairon(II) chain [Fe4(tpda)3Cl2] (1) based on oligo--pyridylamido ligand tpda2– in 2018, the only known iron(II)-based EMAC was a triiron(II) complex with formamidinato ligands (2) described by Cotton et al. in 1998. In 2020, Guillet et al. reported a new triiron(II) chain (3) supported by silylated diaminopyridines. Complexes 1, 2 and 3 exhibit ferromagnetic interactions, while 3 also contains metal-metal bonds. The aim of this Thesis was the design, the synthesis and the characterization of transition metal compounds with highly magnetic electronic states, containing ferromagnetic interactions and, possibly, metal-metal bonds. In particular, it describes a systematic study of a series of iron-based EMACs, obtained and handled in strictly anaerobic and anhydrous conditions. The novel synthesized compounds were firstly characterized by single crystals X-ray diffraction, to define their molecular structures with atomic precision. Afterwards, their properties were investigated in solution (mass spectrometry, electronic and NMR spectroscopy, cyclic voltammetry) and in solid state (Mössbauer spectroscopy, DC and AC magnetometry). The effect of replacing axial Cl– − with Br– ligands in 1 was firstly investigated. Complex [Fe4(tpda)3Br2] (4) exhibits dominant ferromagnetic coupling at room temperature and similar magnetic behavior to 1. Surprisingly, AC experiments pointed out a significant difference: although both 1 and 4 showed SMM behavior, slow magnetic relaxation in 4 was observable even in zero applied field. To attempt activating the double-exchange mechanism, which could strengthen the ferromagnetic interaction in mixed valent compounds, the chemical oxidation of 1 was carried out, isolating two linear triiron mixed-valence species: one- ([Fe2IIFeIII(tpda)3]PF6, 5) and two-electron oxidized ([FeIIFe2III(tpda)3Cl]PF6, 6). Variable temperature 57Fe Mössbauer and electronic spectra suggest that 5 is best classified as a Robin-Day Class II mixed-valence system at 298 K, while no delocalization occurs at 10 and 77 K. Furthermore, 5 exhibits zero-field SMM behavior. In order to better stabilize these chain like structures, a challenging new tripodal ligand, N(CH2CH2NH-Py-NH-Py)3, based on three covalently linked oligo-α-pyridylamido units, was designed and synthesized. Its coordination chemistry towards iron and cobalt was preliminary explored, although no new EMACs were obtained so far.
La dimensione annuale della Global DataSphere (quantità totale di dati creati nel mondo) è aumentata esponenzialmente nell'ultimo decennio e supererà i 150 trilioni di gigabyte entro il 2025. L'archiviazione e l'elaborazione dei dati sono tra i target primari in campi emergenti come le tecnologie quantistiche e la spintronica (spin elettronica). Un importante obiettivo è il controllo delle proprietà magnetiche e dello spin a livello atomico e molecolare. Interessanti, sono nanostrutture chiamate Magneti a Molecola Singola (SMM), che possiedono proprietà magnetiche simili a quelle dei magneti tradizionali, ma con origine puramente molecolare. La bistabilità magnetica e i lunghi tempi di rilassamento possono rendere i SMM applicabili come singoli bit. Le loro proprietà fisiche possono essere ottimizzate mediante design chimico. Gli EMAC (Extended Metal Atom Chains) a base di ferro(II) sono potenziali SMM, per via del grande spin e anisotropia magnetica del Fe2+ ad alto spin. Gli EMAC sono catene lineari di almeno tre ioni metallici, avvolti da leganti organici polidentati, che promuovono corte distanze tra i metalli e, a volte, legami metallo-metallo. Tuttavia, è difficilissimo isolare questi composti per via della grande tendenza di Fe2+ a subire processi di ossidazione e idrolisi. Infatti, prima che nel 2018 noi pubblicassimo una catena di 4 ioni Fe2+, [Fe4(tpda)3Cl2] (1), con leganti oligo--piridilamminici, l'unico EMAC noto a base di ferro(II) era un catena di 3 Fe (2, Cotton et al. nel 1998). Nel 2020, Guillet et al. ha riportato un nuovo complesso di 3 Fe2+ (3) con leganti sililati. I complessi 1, 2 e 3 mostrano interazioni ferromagnetiche, mentre 3 contiene anche legami metallo-metallo. L’obiettivo di questa Tesi è la progettazione, sintesi e caratterizzazione di composti di metalli di transizione con stati elettronici altamente magnetici, contenenti interazioni ferromagnetiche e, eventualmente, legami metallo-metallo. In particolare, essa descrive uno studio sistematico di una serie di EMAC a base di ferro, ottenuti e maneggiati in condizioni strettamente anaerobiche e anidre. I nuovi composti sono stati caratterizzati con diffrazione di raggi X su cristalli singoli, definendo le loro strutture molecolari con precisione atomica. Poi, le loro proprietà sono state studiate in soluzione (spettrometria di massa, spettroscopia elettronica e NMR, voltammetria ciclica) e in stato solido (spettroscopia Mössbauer, magnetometria DC e AC). Inizialmente, i Cl− assiali sono stati sostituiti con leganti Br− in 1. Il complesso [Fe4(tpda)3Br2] (4) ha interazioni ferromagnetiche dominanti a temperatura ambiente e comportamento magnetico simile ad 1. Sorprendentemente, le misure AC hanno evidenziato una differenza significativa: sebbene sia 1 che 4 abbiano mostrato comportamento da SMM, il rilassamento lento della magnetizzazione in 4 avviene anche in campo zero. Per attivare il meccanismo del doppio scambio, che può rafforzare il ferromagnetismo in composti a valenza mista, 1 è stato ossidato, isolando due complessi lineari a valenza mista: mono- ([Fe2IIFeIII(tpda)3]PF6, 5) e bi-ossidato ([FeIIFe2III(tpda)3Cl]PF6, 6). Gli spettri Mössbauer (57Fe) a temperatura variabile, e quello elettronico, classificano 5 come sistema a valenza mista di tipo Robin-Day Classe II, a 298 K, mentre non si verifica alcuna delocalizzazione a 10 e 77 K. Inoltre, 5 ha comportamento da SMM in campo zero. Per aumentare la stabilità di queste strutture a catena, è stato progettato e sintetizzato un nuovo legante tripodale, N(CH2CH2NH-Py-NH-Py)3, con tre unità oligo--piridilamminiche legate covalentemente tra loro. La sua chimica di coordinazione è stata esplorata preliminarmente con ferro e cobalto, sebbene non siano ancora stati ottenuti nuovi EMAC, fino ad ora.
EMAC (Extended Metal Atom Chains) a base di Ferro(II) come Magneti Molecolari: Sintesi, Struttura e Comportamento Magnetico
NICOLINI, ALESSIO
2021
Abstract
The annual size of the Global DataSphere (the total amount of data created across the world) has experienced an exponential increase during the last decade, and it will exceed 150 trillion of gigabytes within 2025. Storage, transfer and elaboration of data became one of the most appealing targets in emerging fields such as quantum technologies and spintronics (spin electronics). A primary goal is the control of magnetic properties and spin at the atomic and molecular level. Interesting are specific nanostructures called Single-Molecule Magnets (SMMs), which possess similar magnetic properties to those of bulk magnets but of pure molecular origin. SMMs can feature magnetic bistability and long relaxation times, which make them attractive to be implemented as single bits. Their physical properties can be tuned by chemical design. Iron(II)-based Extended Metal Atom Chains (EMACs) are appealing synthetic targets as SMMs, because of the large spin and magnetic anisotropy of high-spin iron(II). EMACs are linear arrays of at least 3 metal ions wrapped together by polydentate organic ligands, which promote short separations between the metal centers and, sometimes, metal-metal bonds. However, these compounds proved to be very elusive, due to the exceeding tendency of iron(II) to undergo oxidation and hydrolysis processes. In fact, before our report of a tetrairon(II) chain [Fe4(tpda)3Cl2] (1) based on oligo--pyridylamido ligand tpda2– in 2018, the only known iron(II)-based EMAC was a triiron(II) complex with formamidinato ligands (2) described by Cotton et al. in 1998. In 2020, Guillet et al. reported a new triiron(II) chain (3) supported by silylated diaminopyridines. Complexes 1, 2 and 3 exhibit ferromagnetic interactions, while 3 also contains metal-metal bonds. The aim of this Thesis was the design, the synthesis and the characterization of transition metal compounds with highly magnetic electronic states, containing ferromagnetic interactions and, possibly, metal-metal bonds. In particular, it describes a systematic study of a series of iron-based EMACs, obtained and handled in strictly anaerobic and anhydrous conditions. The novel synthesized compounds were firstly characterized by single crystals X-ray diffraction, to define their molecular structures with atomic precision. Afterwards, their properties were investigated in solution (mass spectrometry, electronic and NMR spectroscopy, cyclic voltammetry) and in solid state (Mössbauer spectroscopy, DC and AC magnetometry). The effect of replacing axial Cl– − with Br– ligands in 1 was firstly investigated. Complex [Fe4(tpda)3Br2] (4) exhibits dominant ferromagnetic coupling at room temperature and similar magnetic behavior to 1. Surprisingly, AC experiments pointed out a significant difference: although both 1 and 4 showed SMM behavior, slow magnetic relaxation in 4 was observable even in zero applied field. To attempt activating the double-exchange mechanism, which could strengthen the ferromagnetic interaction in mixed valent compounds, the chemical oxidation of 1 was carried out, isolating two linear triiron mixed-valence species: one- ([Fe2IIFeIII(tpda)3]PF6, 5) and two-electron oxidized ([FeIIFe2III(tpda)3Cl]PF6, 6). Variable temperature 57Fe Mössbauer and electronic spectra suggest that 5 is best classified as a Robin-Day Class II mixed-valence system at 298 K, while no delocalization occurs at 10 and 77 K. Furthermore, 5 exhibits zero-field SMM behavior. In order to better stabilize these chain like structures, a challenging new tripodal ligand, N(CH2CH2NH-Py-NH-Py)3, based on three covalently linked oligo-α-pyridylamido units, was designed and synthesized. Its coordination chemistry towards iron and cobalt was preliminary explored, although no new EMACs were obtained so far.File | Dimensione | Formato | |
---|---|---|---|
Thesis Alessio Nicolini.pdf
Open Access dal 08/07/2024
Dimensione
12.56 MB
Formato
Adobe PDF
|
12.56 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/79350
URN:NBN:IT:UNIMORE-79350