COPD and asthma are the main obstructive lung diseases, globally affecting 1/6 people worldwide. In spite of similar clinical manifestations, these conditions result from completely different pathogenic mechanisms responsible for peculiar inflammatory responses. COPD patients typically present a limitation of airflow which is not fully reversible and is caused by an abnormal inflammatory response in the small airways and lung parenchyma, driven by an exaggerate reaction to cigarette smoke that, in susceptible smokers, persists even after smoking cessation. The chronic inflammation that involves airways in asthma, instead, is driven by the interaction between heritable factors and environmental exposure and is associated to airway hyper-responsiveness and variable airflow obstruction. It is now evident that the initial innate inflammation elicited by smoking, unless controlled and minimized, triggers an adaptive immune response associated to the development of COPD. In some smokers, this uncontrolled adaptive immune inflammation could evolve into an autoimmune reaction that destroys the lung, causing severe COPD. Therefore, a persistent immune activation due to a deregulation of the immune response appears to be crucial for both the development and the progression of COPD. Similar to COPD, an aberrant immune reaction to environmental triggers (virus, allergens and pollution) underlies the development of asthma. Indeed, asthma is now recognized as a heterogeneous disease sustained by multiple biologic pathways that eventually manifest with similar symptoms (shortness of breath, wheezing and cough). Shortly, asthma “endotypes” (i.e. subsets of disease with a distinct molecular mechanism and pathogenesis) can be distinguished into type-2 “high” and type-2 low subgroups, according to the degree of T helper 2 inflammation (characterized by eosinophils, mast cells, basophils, and IgE-producing B-cells). All these mechanisms point to a central role of the inflammatory response to smoking in COPD and to environmental and intrinsic triggers in asthma. The aim of my PhD project was to investigate the role of inflammation modifiers in the development of obstructive lung diseases, or evasion from them, in an attempt to clarify the role of immune system in the pathogenesis and clinical outcomes of these diseases. In COPD we first focused on the role of 2 immune cells: lymphocytes and eosinophils. By the analysis of circulating lymphocyte and eosinophil count prospectively collected in a 5 year longitudinal study on smokers with and without COPD, we found that low blood lymphocytes (BL) and BL decline were independent risk factors for mortality. Eosinophil levels, instead, did not predict exacerbation rate in our population and, more interestingly, high eosinophil numbers were associated to higher survival. These findings were confirmed in a population of severe exacerbators admitted to our ward. A relevant percentage of these patients had concomitant acute heart failure, suggesting how complex might be the diagnosis of “COPD exacerbation”. Investigating the interaction between inflammatory cells, we approached the study of EVs, tiny shuttles of cell-cell communications. We developed a method to detect and characterized BAL EVs, and found that the majority of them derived from alveolar macrophages and that their number significantly increased in COPD. Focusing on EV content in COPD, we described fir the first time that alveolar macrophage-derived EVs in BAL were enriched in SOCS3, a crucial immune modulator whose expression is similarly enhanced in COPD alveoli, as observed by our pathological study. Finally, we assessed the miRNA content in BAL EV, finding that SOCS3 post transcriptional regulators, miR-19a-3p and miR-221-3p were reduced in COPD. Studying asthma pathogenesis, we focused on the mechanisms of T-2 low diseaese and applyed metagenomic techniques to study airway microbiome.
La BPCO e l’asma costituiscono le principali pneumopatie ostruttive e affliggono, complessivamente, una persona su sei. Nonostante le somiglianze nella manifestazione clinica, queste condizioni derivano da meccanismi patogenetici completamente diversi responsabili di specifiche risposte infiammatorie. La BPCO si presenta tipicamente con limitazione al flusso non completamente reversibile, causata da un anormale risposta infiammatoria nelle piccole vie aeree e nel parenchima polmonare, innescata dal fumo di sigaretta, che, nei fumatori suscettibili, persiste anche dopo la cessazione dell’abitudine tabagica. L’infiammazione cronica che coinvolge le vie aeree nell’asma, invece, è innescata dall’interazione tra fattori genetici e ambientali e si associa a iperreattività bronchiale e variabile limitazione al flusso aereo. Oggi è chiaro che l’iniziale risposta infiammatoria innata innescata dal fumo, se non controllata, promuove una risposta immune acquisita responsabile dello sviluppo di BPCO. In alcuni fumatori questa risposta infiammatoria acquisita può evolvere in una reazione autoimmune che distrugge il polmone comportando forme gravi di BPCO. La persistente attivazione immunologica dovuta alla disregolazione della risposta immunitaria appare quindi cruciale nello sviluppo e nella progressione della BPCO. In modo simile, alla base dello sviluppo dell’asma vi è un’aberrante reazione immunitaria a stimoli ambientali (virus, allergeni e inquinamento). L’asma è considerata una patologia eterogenea sostenuta da molteplici patwhays biologici che si manifestano con sintomi simili alla BPCO (dispnea, respiro sibilante e tosse). In breve, gli “endotipi” di asma (ovvero sottotipi di malattia con distinti meccanismi molecolari e patogenetici) si possono classificare come di “tipo 2” e “non di tipo 2” a seconda del livello di infiammazione T helper 2, caratterizzata da eosinofili, mastociti, basofili e linfociti B secernenti IgE. Tali meccanismi puntano al ruolo centrale della risposta infiammatoria al fumo nella BPCO e agli stimoli ambientali e intrinseci nell’asma. Lo scopo del mio progetto di dottorato è stato quello di indagare il ruolo dei modulatori dell’infiammazione nello sviluppo delle pneumopatie ostruttive e nell’evasione da queste stesse, nel tentativo di chiarire il ruolo del sistema immunitario nella patogenesi e negli outcomes clinici di queste malattie. Nella BPCO ci siamo focalizzati sul ruolo patogenetico di due tipi di cellule immunitarie: i linfociti e gli eosinofili. In uno studio longitudinale prospettico durato 5 anni abbiamo analizzato il numero dei linfociti e degli eosinofili circolanti, misurati annualmente, in un gruppo di fumatori con e senza BPCO. Abbiamo osservato che bassi livelli di linfociti e un loro rapido declino sono fattori di rischio indipendenti di mortalità. I livelli di eosinofili, invece, non sono risultati associati alla frequenza delle riacutizzazioni nella popolazione studiata mentre l’eosinofilia periferica è risultata associata ad una maggiore sopravvivenza. Analizzando l’interazione tra cellule infiammatorie, abbiamo intrapreso lo studio delle EV, submicroscopici veicoli di messaggi intercellulari. Abbiamo perfezionato un metodo per identificare le EV nel BAL e abbiamo osservato che la maggior parte delle EV nel BAL originavano dai macrofagi alveolari e che il loro numero era maggiore nei soggetti affetti da BPCO. Ci siamo dunque concentrati sul contenuto delle EV osservando che erano cariche di SOCS3, una proteina immuno-modulatrice, e che i miRNAs regolatori di SOCS3 erano alterati nella BPCO. Per lo studio della patogenesi dell'asma abbiamo collaborato con l'Università di Oxford. Tecniche di metagenomica sono state applicate per caratterizzare il microbioma delle vie aeree nell'asma e identificare tratti curabili di asma "non T2".
inflammation modifiers in the development of obstructive lung diseases
TINE', MARIAENRICA
2022
Abstract
COPD and asthma are the main obstructive lung diseases, globally affecting 1/6 people worldwide. In spite of similar clinical manifestations, these conditions result from completely different pathogenic mechanisms responsible for peculiar inflammatory responses. COPD patients typically present a limitation of airflow which is not fully reversible and is caused by an abnormal inflammatory response in the small airways and lung parenchyma, driven by an exaggerate reaction to cigarette smoke that, in susceptible smokers, persists even after smoking cessation. The chronic inflammation that involves airways in asthma, instead, is driven by the interaction between heritable factors and environmental exposure and is associated to airway hyper-responsiveness and variable airflow obstruction. It is now evident that the initial innate inflammation elicited by smoking, unless controlled and minimized, triggers an adaptive immune response associated to the development of COPD. In some smokers, this uncontrolled adaptive immune inflammation could evolve into an autoimmune reaction that destroys the lung, causing severe COPD. Therefore, a persistent immune activation due to a deregulation of the immune response appears to be crucial for both the development and the progression of COPD. Similar to COPD, an aberrant immune reaction to environmental triggers (virus, allergens and pollution) underlies the development of asthma. Indeed, asthma is now recognized as a heterogeneous disease sustained by multiple biologic pathways that eventually manifest with similar symptoms (shortness of breath, wheezing and cough). Shortly, asthma “endotypes” (i.e. subsets of disease with a distinct molecular mechanism and pathogenesis) can be distinguished into type-2 “high” and type-2 low subgroups, according to the degree of T helper 2 inflammation (characterized by eosinophils, mast cells, basophils, and IgE-producing B-cells). All these mechanisms point to a central role of the inflammatory response to smoking in COPD and to environmental and intrinsic triggers in asthma. The aim of my PhD project was to investigate the role of inflammation modifiers in the development of obstructive lung diseases, or evasion from them, in an attempt to clarify the role of immune system in the pathogenesis and clinical outcomes of these diseases. In COPD we first focused on the role of 2 immune cells: lymphocytes and eosinophils. By the analysis of circulating lymphocyte and eosinophil count prospectively collected in a 5 year longitudinal study on smokers with and without COPD, we found that low blood lymphocytes (BL) and BL decline were independent risk factors for mortality. Eosinophil levels, instead, did not predict exacerbation rate in our population and, more interestingly, high eosinophil numbers were associated to higher survival. These findings were confirmed in a population of severe exacerbators admitted to our ward. A relevant percentage of these patients had concomitant acute heart failure, suggesting how complex might be the diagnosis of “COPD exacerbation”. Investigating the interaction between inflammatory cells, we approached the study of EVs, tiny shuttles of cell-cell communications. We developed a method to detect and characterized BAL EVs, and found that the majority of them derived from alveolar macrophages and that their number significantly increased in COPD. Focusing on EV content in COPD, we described fir the first time that alveolar macrophage-derived EVs in BAL were enriched in SOCS3, a crucial immune modulator whose expression is similarly enhanced in COPD alveoli, as observed by our pathological study. Finally, we assessed the miRNA content in BAL EV, finding that SOCS3 post transcriptional regulators, miR-19a-3p and miR-221-3p were reduced in COPD. Studying asthma pathogenesis, we focused on the mechanisms of T-2 low diseaese and applyed metagenomic techniques to study airway microbiome.File | Dimensione | Formato | |
---|---|---|---|
Mariaenrica_Tine_Tesi.pdf
accesso aperto
Dimensione
18.88 MB
Formato
Adobe PDF
|
18.88 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/79629
URN:NBN:IT:UNIPD-79629