Epidermolysis Bullosa Simplex (EBS) is the most common form of Epidermolysis Bullosa (EB) and it is mainly inherited in an autosomal dominant manner (prevalence 1/30000 – 1/50000). Several clinical variants have been described based on the mutated gene, the site of blister formation and the anatomical distribution, but the vast majority of the patients display dominant mutations in genes encoding keratin 5 (KRT5) and keratin 14 (KRT14). The lack of functional keratin intermediate filaments causes basal keratinocytes to exhibit a dramatic cytoplasmatic softening and rupture, when subjected to minor mechanical traction, leading to the distinctive EBS patients intraepidermal blisters formation. Whilst viral mediated addition of a corrected copy of the altered gene is the ascertained approach to tackle recessively inherited EB (such as Junctional and Dystrophic EB), a potential successful combined cell and gene therapy for EBS dominant forms requires the editing of the mutated gene. In this case study, we outlined an allele specific CRISPR/Cas9 gene editing approach able to specifically detect and disrupt a de novo monoallelic c.475/495del21 mutation within exon 1 of KRT14. Taking advantage of the tailored CRISPR/Cas9 system to induce a NHEJ mediated frameshift mutations introduction, we attained a remarkable mutant allele knock-out efficiency. Following KRT14 mutant allele specific gene editing, patient derived primary keratinocytes (EBS01) restored a normal intermediate filament network and mechanical stress resilience. Besides the potency of this approach, we pointed out the RNP nucleofection as the most efficient delivery method allowing less off-targets events, as compared to integrating lentiviral vectors. Furthermore, we proved the low toxicity of RNP nucleofection in primary clonogenic keratinocytes that preserves epithelial stem cells, which is mandatory for long-term epidermal regeneration. Taken together these data suggest that this highly efficacious and safe gene editing strategy would enable its translation to clinical application for the treatment of this and other dominant Epidermolysis Bullosa forms.
L’Epidermolisi Bollosa Semplice (EBS) è una delle forme più comuni di Epidermolisi Bollosa con trasmissione principalmente autosomica dominante (prevalenza stimata 1/30000 – 1/50000). Sebbene siano stati classificati numerosi sotto tipi, distinti per gene affetto da mutazione e localizzazione anatomica delle lesioni bollose, la maggior parte dei pazienti affetti da Epidermolisi Bollosa Semplice presentano mutazioni a carico dei geni cheratina 5 e cheratina 14. A causa di tali mutazioni e della conseguente scorretta organizzazione dei filamenti intermedi, il citoplasma dei cheratinociti dello strato basale presenta una maggiore propensione alla rottura, qualora sottoposto anche alla minima trazione meccanica, causando così l’insorgere della tipica fragilità epiteliale dei pazienti. Sebbene l’approccio preferenziale per il trattamento di forme recessive di Epidermolisi Bollosa (come ad esempio le forme distrofiche e giunzionali) sia l’inserimento nel genoma di una copia del gene corretto, per le forme dominanti un potenziale trattamento è rappresentato dall’editing genomico. Con tale consapevolezza, in questo progetto abbiamo studiato la capacità del sistema CRISPR/Cas9 di identificare, specificatamente ad un solo allele, la mutazione de novo (c.475/495del21) sull’esone 1 del gene KRT14. Grazie a questo approccio, la nucleasi Cas9 è in grado di formare, sul solo sito di mutazione, rotture al doppio filamento di DNA che, corrette tramite NHEJ, portano alla distruzione del frame di lettura e alla conseguente interrotta espressione del gene mutato. A seguito di tale correzione genetica e dell’eliminazione dell’espressione della cheratina mutata, i cheratinociti primari derivanti da paziente (EBS01) presentano un recupero fenotipico dei filamenti intermedi ed una corretta capacità di resistere agli stress meccanici. Abbiamo inoltre dimostrato come il metodo migliore per targettare all’interno delle cellule il macchinario di editing genetico, garantendo allo stesso tempo un basso indice di eventi off-target, sia nucleofettare i cheratinociti primari EBS01 con un complesso ribonucleoproteico. La nucleofezione non solo non risulta citotossica per il compartimento staminale ma ne permette anche la correzione genetica, consentendo alle cellule staminali di rigenerare un epitelio funzionale e stabile. I dati presentati in questo lavoro sottolineano, dunque, l’efficacia di questa strategia molecolare, ponendo anche le basi per un’applicazione clinica dell’editing genetico allele specifico per il trattamento di altre forme dominanti di Epidermolisi Bollosa.
Editing genomico allele specifico per il trattamento di una forma de novo di Epidermolisi Bollosa Semplice autosomica dominante
CATTANEO, CAMILLA
2023
Abstract
Epidermolysis Bullosa Simplex (EBS) is the most common form of Epidermolysis Bullosa (EB) and it is mainly inherited in an autosomal dominant manner (prevalence 1/30000 – 1/50000). Several clinical variants have been described based on the mutated gene, the site of blister formation and the anatomical distribution, but the vast majority of the patients display dominant mutations in genes encoding keratin 5 (KRT5) and keratin 14 (KRT14). The lack of functional keratin intermediate filaments causes basal keratinocytes to exhibit a dramatic cytoplasmatic softening and rupture, when subjected to minor mechanical traction, leading to the distinctive EBS patients intraepidermal blisters formation. Whilst viral mediated addition of a corrected copy of the altered gene is the ascertained approach to tackle recessively inherited EB (such as Junctional and Dystrophic EB), a potential successful combined cell and gene therapy for EBS dominant forms requires the editing of the mutated gene. In this case study, we outlined an allele specific CRISPR/Cas9 gene editing approach able to specifically detect and disrupt a de novo monoallelic c.475/495del21 mutation within exon 1 of KRT14. Taking advantage of the tailored CRISPR/Cas9 system to induce a NHEJ mediated frameshift mutations introduction, we attained a remarkable mutant allele knock-out efficiency. Following KRT14 mutant allele specific gene editing, patient derived primary keratinocytes (EBS01) restored a normal intermediate filament network and mechanical stress resilience. Besides the potency of this approach, we pointed out the RNP nucleofection as the most efficient delivery method allowing less off-targets events, as compared to integrating lentiviral vectors. Furthermore, we proved the low toxicity of RNP nucleofection in primary clonogenic keratinocytes that preserves epithelial stem cells, which is mandatory for long-term epidermal regeneration. Taken together these data suggest that this highly efficacious and safe gene editing strategy would enable its translation to clinical application for the treatment of this and other dominant Epidermolysis Bullosa forms.File | Dimensione | Formato | |
---|---|---|---|
PhD Thesis Camilla Cattaneo.pdf
embargo fino al 22/05/2026
Dimensione
3.82 MB
Formato
Adobe PDF
|
3.82 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/79707
URN:NBN:IT:UNIMORE-79707