Photonics technologies are nowadays widely diffused as sensing platforms in plenty of different fields, that range from manufacturing to the agri-food industry or biomedical laboratories. In this thesis, a particular kind of photonic technology is proposed as DNA label-free sensor: the Hollow-Core Inhibited-Coupling Fibers (HC-ICFs). DNA monitoring is essential for quality control and the fight against counterfeiting in the agri-food industry. HC-ICFs have aroused much interest in the sensing field for the characteristics that distinguish them, such as the tunability of their working spectral range, the wide transmission bandwidth, and the possibility to fill their hollow core with gas or liquids. In fact, HC-ICFs are characterized by a hollow core surrounded by micro-structured cladding. The thickness of the cladding structure defines the limit wavelength of the fibers working bands. In the sensor proposed in this work, the sensing mechanism exploits this principle. The probe molecule is attached through a chemical procedure to the inner surface of the fiber and then a solution containing the target molecule is fluxed into the fiber allowing the bond between probe and target. Thanks to the bond an additional biolayer grows on the cladding surface of the fiber effectively changing its thickness. Change is detectable by simply measuring the spectrum of the fiber before and after the target injection. Even though the effectiveness of the working principle of the sensor is here experimentally proven, the uniformity of the biolayer along the length of the fiber is not known, and a lack of uniformity can affect the measurement. For this reason, a study about the non-idealities of the cladding structure of HC-ICFs is part of this thesis, in order to understand their effects and how they can compromise the performances of the sensing platform.
Le tecnologie fotoniche sono oggi ampiamente diffuse come piattaforme di rilevamento in moltissimi campi diversi, che vanno dall'industria manifatturiera all'industria agroalimentare o ai laboratori biomedici. In questa tesi viene proposto un particolare tipo di tecnologia fotonica come sensore DNA label-free: le Hollow-Core Inhibited-Coupling Fibers (HC-ICF). Il monitoraggio del DNA è essenziale per il controllo della qualità e la lotta alla contraffazione nell'industria agroalimentare. Le HC-ICF hanno suscitato molto interesse nel campo del sensing per le caratteristiche che li contraddistinguono, come la sintonizzabilità del loro range spettrale di lavoro, l'ampia larghezza di banda di trasmissione e la possibilità di riempire il loro core cavo con gas o liquidi. Infatti, gli HC-ICF sono caratterizzati da un core cavo circondato da un cladding microstrutturato. Lo spessore della struttura del cladding definisce la lunghezza d'onda limite delle fasce di lavoro delle fibre. Nel sensore proposto in questo lavoro, il meccanismo di rilevamento sfrutta questo principio. La molecola probe viene fissata attraverso una procedura chimica alla superficie interna della fibra e quindi una soluzione contenente la molecola target viene flussata nella fibra consentendo il legame tra la probe e il target. Grazie al legame un biostrato cresce sulla superficie di rivestimento della fibra modificandone efficacemente lo spessore. Il cambiamento è rilevabile semplicemente misurando lo spettro della fibra prima e dopo l'iniezione target. Anche se l'efficacia del principio di funzionamento del sensore è qui provata sperimentalmente, l'uniformità del biostrato lungo la lunghezza della fibra non è nota e una mancanza di uniformità può influenzare la misurazione. Per questo motivo fa parte di questa tesi uno studio sulle non idealità della struttura del cladding degli HC-ICF, al fine di comprenderne gli effetti e come possono compromettere le prestazioni della piattaforma di rilevamento.
Fibre Ottiche a Nucleo Cavo e Accoppiamento Inibito come piattaforma di rilevazione di DNA
MELLI, FEDERICO
2023
Abstract
Photonics technologies are nowadays widely diffused as sensing platforms in plenty of different fields, that range from manufacturing to the agri-food industry or biomedical laboratories. In this thesis, a particular kind of photonic technology is proposed as DNA label-free sensor: the Hollow-Core Inhibited-Coupling Fibers (HC-ICFs). DNA monitoring is essential for quality control and the fight against counterfeiting in the agri-food industry. HC-ICFs have aroused much interest in the sensing field for the characteristics that distinguish them, such as the tunability of their working spectral range, the wide transmission bandwidth, and the possibility to fill their hollow core with gas or liquids. In fact, HC-ICFs are characterized by a hollow core surrounded by micro-structured cladding. The thickness of the cladding structure defines the limit wavelength of the fibers working bands. In the sensor proposed in this work, the sensing mechanism exploits this principle. The probe molecule is attached through a chemical procedure to the inner surface of the fiber and then a solution containing the target molecule is fluxed into the fiber allowing the bond between probe and target. Thanks to the bond an additional biolayer grows on the cladding surface of the fiber effectively changing its thickness. Change is detectable by simply measuring the spectrum of the fiber before and after the target injection. Even though the effectiveness of the working principle of the sensor is here experimentally proven, the uniformity of the biolayer along the length of the fiber is not known, and a lack of uniformity can affect the measurement. For this reason, a study about the non-idealities of the cladding structure of HC-ICFs is part of this thesis, in order to understand their effects and how they can compromise the performances of the sensing platform.File | Dimensione | Formato | |
---|---|---|---|
Tesi definitiva Melli Federico.pdf
accesso aperto
Dimensione
45.4 MB
Formato
Adobe PDF
|
45.4 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/79891
URN:NBN:IT:UNIMORE-79891