Elastic membranes find numerous applications in several technological fields. These structures are typically made of elastomers, due to their capability to withstand large elastic deformations. A consistent analysis of the mechanics of membranes must necessarily consider geometrical and material nonlinearities. Due to the resulting mathematical complexity, membrane problems are usually studied with numerical approaches and simple incompressible material models. This thesis investigates deeply the mechanics of elastic membranes to fill the lack of reliable analytical solutions and refined material models involving material compressibility. Firstly, a simplified model to derive the analytical response of inflated circular flat membranes is proposed. Spherical deformed configurations are assumed as simplifying assumption. The membrane is regarded as a homogeneous, isotropic, hyperelastic solid described by a compressible Mooney-Rivlin constitutive law. The equilibrium at the pole of the membrane gives the analytical relation between the pressure and the deflection of the pole. Being approximate, this solution lacks of accuracy at very large deformations. A corrective function based on the numerical solution of the problem is calibrated, leading to a closed-form formula valid regardless of geometry, material parameters and range of deformation. Subsequently, the formulation is extended to pre-stretched circular flat membranes and it is validated by means of finite element simulations. Bulge tests are performed on three elastomeric membranes, both unstretched and pre-stretched, and the proposed formulas are used to identify the material parameters. At very large deformations the compressible Mooney-Rivlin model suffers major limitations, especially regarding material hardening and volume changes. Therefore, an accurate strain energy function (SED) for the response of elastomers at very large deformations is proposed. In particular, the volumetric part of the SED is calibrated on experimental tests reflecting the real volumetric response of the material. Finally, the proposed SED is applied to study the effect of compressibility in three benchmark membrane problems: inflation of a circular flat membrane, inflation of a thin-walled cylindrical tube, and inflation of a thin-walled spherical balloon. Four different materials with increasing degree of compressibility are considered. As compressibility increases, significant differences are observed in the pressure curve as well as in the deformed shapes. As final application, compressibility is introduced in the response of a dielectric elastomer membrane. It is shown how compressibility affects the electromechanical coupling, opening up new potential design scenarios. On one hand, the models proposed in this thesis provide a reliable and ready-to-use analytical tool for practical applications of inflated membranes. On the other hand, the proposed solutions for compressible materials lay the foundation for applications of membranes made of innovative materials as foams, gels, metamaterials, which exhibit significant compressibility even at small deformations.

Le membrane elastiche trovano numerose applicazioni in vari ambiti tecnologici. Queste strutture sono tipicamente realizzate in materiali elastomerici, grazie alla loro capacità di sostenere grandi deformazioni elastiche. Un'adeguata analisi della meccanica delle membrane deve necessariamente considerare le non linearità geometriche e materiali. A causa della complessità matematica, i problemi riguardanti le membrane sono solitamente studiati con approcci numerici e assumendo semplici modelli di materiale incomprimibile. Questa tesi studia approfonditamente la meccanica delle membrane elastiche per colmare la mancanza di affidabili soluzioni analitiche e di accurati modelli materiali che considerino la comprimibilità. Innanzitutto viene proposto un modello semplificato per ottenere la risposta analitica di membrane piane circolari soggette a pressione laterale. Come ipotesi semplificativa, la configurazione deformata viene assunta sferica. La membrana è considerata come un solido omogeneo, isotropo e iperelastico descritto da un legame Mooney-Rivlin comprimibile. L'equilibrio al polo della membrana fornisce la relazione analitica tra la pressione e lo spostamento del polo stesso. Essendo approssimata, questa soluzione perde accuratezza in grandi deformazioni. Perciò viene calibrata una funzione correttiva basata sulla soluzione numerica del problema, ottenendo una formula chiusa e valida indipendentemente dalla geometria, dai valori dei parametri del materiale e dal livello di deformazione. Successivamente, la formulazione è estesa alle membrane circolari piane dotate di pre-stretch ed è validata attraverso simulazioni agli elementi finiti. Dei bulge test sono condotti su tre membrane elastomeriche, sia senza che con pre-stretch, e le formule proposte sono utilizzate per determinare i parametri dei materiali. A deformazioni molto elevate il modello di Mooney-Rivlin comprimibile riscontra importanti limiti, specialmente dovuti all'hardening del materiale e alle variazioni di volume. Perciò viene proposta un'energia di deformazione accurata per la risposta di elastomeri in grandi deformazioni. In particolare, la parte volumetrica dell'energia è calibrata sulla base di prove sperimentali e riflette la reale risposta volumetrica del materiale. Infine, la forma di energia proposta è usata per studiare l'effetto della comprimibilità in tre problemi di riferimento: una membrana circolare soggetta a pressione laterale, un tubo cilindrico a parete sottile in pressione, e una sfera a parete sottile in pressione. Vengono considerati quattro differenti materiali con grado di comprimibilità crescente. Al crescere della comprimibilità, si osservano differenze significative sia nella curva della pressione sia nelle deformate. Come ultima applicazione, la comprimibilità viene introdotta nella risposta di un attuatore ad elastomeri dielettrici. Viene mostrato come la comprimibilità influenzi l'accoppiamento elettromeccanico e apra nuovi possibili scenari applicativi. Da un lato, i modelli proposti forniscono uno strumento analitico affidabile e di immediato utilizzo per le applicazioni pratiche. Dall'altro, le soluzioni proposte per materiali comprimibili gettano le basi per applicazioni di membrane realizzate in materiali innovativi come schiume, gel e metamateriali, i quali mostrano una comprimibilità significativa anche a piccole deformazioni.

Meccanica delle strutture a membrana in elasticità non lineare

SIROTTI, STEFANO
2024

Abstract

Elastic membranes find numerous applications in several technological fields. These structures are typically made of elastomers, due to their capability to withstand large elastic deformations. A consistent analysis of the mechanics of membranes must necessarily consider geometrical and material nonlinearities. Due to the resulting mathematical complexity, membrane problems are usually studied with numerical approaches and simple incompressible material models. This thesis investigates deeply the mechanics of elastic membranes to fill the lack of reliable analytical solutions and refined material models involving material compressibility. Firstly, a simplified model to derive the analytical response of inflated circular flat membranes is proposed. Spherical deformed configurations are assumed as simplifying assumption. The membrane is regarded as a homogeneous, isotropic, hyperelastic solid described by a compressible Mooney-Rivlin constitutive law. The equilibrium at the pole of the membrane gives the analytical relation between the pressure and the deflection of the pole. Being approximate, this solution lacks of accuracy at very large deformations. A corrective function based on the numerical solution of the problem is calibrated, leading to a closed-form formula valid regardless of geometry, material parameters and range of deformation. Subsequently, the formulation is extended to pre-stretched circular flat membranes and it is validated by means of finite element simulations. Bulge tests are performed on three elastomeric membranes, both unstretched and pre-stretched, and the proposed formulas are used to identify the material parameters. At very large deformations the compressible Mooney-Rivlin model suffers major limitations, especially regarding material hardening and volume changes. Therefore, an accurate strain energy function (SED) for the response of elastomers at very large deformations is proposed. In particular, the volumetric part of the SED is calibrated on experimental tests reflecting the real volumetric response of the material. Finally, the proposed SED is applied to study the effect of compressibility in three benchmark membrane problems: inflation of a circular flat membrane, inflation of a thin-walled cylindrical tube, and inflation of a thin-walled spherical balloon. Four different materials with increasing degree of compressibility are considered. As compressibility increases, significant differences are observed in the pressure curve as well as in the deformed shapes. As final application, compressibility is introduced in the response of a dielectric elastomer membrane. It is shown how compressibility affects the electromechanical coupling, opening up new potential design scenarios. On one hand, the models proposed in this thesis provide a reliable and ready-to-use analytical tool for practical applications of inflated membranes. On the other hand, the proposed solutions for compressible materials lay the foundation for applications of membranes made of innovative materials as foams, gels, metamaterials, which exhibit significant compressibility even at small deformations.
15-mag-2024
Inglese
Le membrane elastiche trovano numerose applicazioni in vari ambiti tecnologici. Queste strutture sono tipicamente realizzate in materiali elastomerici, grazie alla loro capacità di sostenere grandi deformazioni elastiche. Un'adeguata analisi della meccanica delle membrane deve necessariamente considerare le non linearità geometriche e materiali. A causa della complessità matematica, i problemi riguardanti le membrane sono solitamente studiati con approcci numerici e assumendo semplici modelli di materiale incomprimibile. Questa tesi studia approfonditamente la meccanica delle membrane elastiche per colmare la mancanza di affidabili soluzioni analitiche e di accurati modelli materiali che considerino la comprimibilità. Innanzitutto viene proposto un modello semplificato per ottenere la risposta analitica di membrane piane circolari soggette a pressione laterale. Come ipotesi semplificativa, la configurazione deformata viene assunta sferica. La membrana è considerata come un solido omogeneo, isotropo e iperelastico descritto da un legame Mooney-Rivlin comprimibile. L'equilibrio al polo della membrana fornisce la relazione analitica tra la pressione e lo spostamento del polo stesso. Essendo approssimata, questa soluzione perde accuratezza in grandi deformazioni. Perciò viene calibrata una funzione correttiva basata sulla soluzione numerica del problema, ottenendo una formula chiusa e valida indipendentemente dalla geometria, dai valori dei parametri del materiale e dal livello di deformazione. Successivamente, la formulazione è estesa alle membrane circolari piane dotate di pre-stretch ed è validata attraverso simulazioni agli elementi finiti. Dei bulge test sono condotti su tre membrane elastomeriche, sia senza che con pre-stretch, e le formule proposte sono utilizzate per determinare i parametri dei materiali. A deformazioni molto elevate il modello di Mooney-Rivlin comprimibile riscontra importanti limiti, specialmente dovuti all'hardening del materiale e alle variazioni di volume. Perciò viene proposta un'energia di deformazione accurata per la risposta di elastomeri in grandi deformazioni. In particolare, la parte volumetrica dell'energia è calibrata sulla base di prove sperimentali e riflette la reale risposta volumetrica del materiale. Infine, la forma di energia proposta è usata per studiare l'effetto della comprimibilità in tre problemi di riferimento: una membrana circolare soggetta a pressione laterale, un tubo cilindrico a parete sottile in pressione, e una sfera a parete sottile in pressione. Vengono considerati quattro differenti materiali con grado di comprimibilità crescente. Al crescere della comprimibilità, si osservano differenze significative sia nella curva della pressione sia nelle deformate. Come ultima applicazione, la comprimibilità viene introdotta nella risposta di un attuatore ad elastomeri dielettrici. Viene mostrato come la comprimibilità influenzi l'accoppiamento elettromeccanico e apra nuovi possibili scenari applicativi. Da un lato, i modelli proposti forniscono uno strumento analitico affidabile e di immediato utilizzo per le applicazioni pratiche. Dall'altro, le soluzioni proposte per materiali comprimibili gettano le basi per applicazioni di membrane realizzate in materiali innovativi come schiume, gel e metamateriali, i quali mostrano una comprimibilità significativa anche a piccole deformazioni.
Comprimibilità; Elastomeri; Grandi deformazioni; Iperelasticità; Modelli analitici
BRISEGHELLA, BRUNO
TARANTINO, Angelo Marcello
MUSCIO, Alberto
Università degli studi di Modena e Reggio Emilia
File in questo prodotto:
File Dimensione Formato  
Tesi_Sirotti.pdf

embargo fino al 15/05/2025

Dimensione 20.28 MB
Formato Adobe PDF
20.28 MB Adobe PDF

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/80535
Il codice NBN di questa tesi è URN:NBN:IT:UNIMORE-80535