Humans are social animals that rarely live in complete isolation. Thus, human decisions often take the form of social decisions, regarding other social agents and possibly influenced by them. Social decision-making processes can lead, in turn, to relevant social manifestations such as altruistic or selfish behaviors that significantly determine our society. Humans can learn these behaviors by direct experience (ie, direct learning) or through the observation of others (ie, observational learning). However, the neurobiology underlying altruistic or selfish choices, either by direct or observational learning, is still unclear. In recent years, many studies described social decision-making processes and associated behaviors such as altruistic-like behaviors in nonhuman animals, including rodents. Moreover, rodents are able to learn spatial and affective tasks also by observing their similars. Thus, rodents offer the possibility to dissect in detail the neural bases of social decision-making processes either when these are learned by direct or observational learning. For my PhD project, we developed a social decision-making task (SDM) in which mice can decide whether to keep for themselves (ie, selfish choice) or share a reward with their conspecifics (ie, altruistic choice). We found that adult male mice overall preferred to share food with their similars. However, preference for altruistic choices was modulated by internal and external determinants such as sex, familiarity, motivation, empathy and social dominance. Besides, our inhibitory chemogenetic manipulations demonstrated that the basolateral amygdala (BLA) is involved in the establishment of altruistic decisions. In particular, BLA neurons projecting to the prelimbic (PL) region of the prefrontal cortex mediated the development of a preference for altruistic choices, whereas PL projections to the BLA produced a drift towards selfish acts. We also revealed that mice were able to acquire the SDM through observation. In particular, observer mice showed an enhanced performance compared to their conspecific demonstrators. At the neural level, we found that the dorsal region of the hippocampus (dCA1) was fundamental for the acquisition of social decision-making processes through others’ observation. Indeed, dCA1 silencing, while did not compromise the procedural learning of the SDM task, considerably slowed the establishment of a clear social preference through observation. Then, this PhD project sheds light on the neural circuitry underlying social decision-making processes either by direct or observational learning, with relevance to pathologies such as neuropsychiatric or neurodegenerative disorders often associated with social dysfunction, including social decision-making deficits.

Gli esseri umani sono animali sociali che raramente vivono in completo isolamento. Pertanto, le nostre decisioni spesso prendono la forma di decisioni sociali, che riguardano altri interlocutori e possibilmente vengono influenzate da essi. I processi decisionali possono portare, a loro volta, a manifestazioni sociali rilevanti come i comportamenti altruistici o egoistici, i quali determinano in modo significativo la nostra società. Gli esseri umani possono apprendere questi comportamenti attraverso l'apprendimento diretto o attraverso l'osservazione degli altri, che prende il nome di apprendimento osservativo. Tuttavia, i fondamenti neurobiologici alla base delle scelte altruistiche o egoistiche, sia attraverso l'apprendimento diretto che attraverso l'osservazione, non sono ancora chiari. Negli ultimi anni, molti studi hanno descritto in animali non umani, inclusi i roditori, comportamenti che possono assomigliare all’altruismo. Inoltre, i roditori sono in grado di apprendere task spaziali e affettivi anche osservando i loro simili. Pertanto, i roditori offrono la possibilità di analizzare in dettaglio le basi neurali dei processi decisionali sociali sia quando queste vengono apprese tramite apprendimento diretto sia tramite osservazione. Per il mio progetto di dottorato, abbiamo sviluppato un task decisionale in ambito sociale (SDM) in cui i topi possono decidere se condividere (scelta altruistica) o no (scelta egoistica) una ricompensa con i loro conspecifici. Abbiamo osservato che i topi maschi adulti, nel complesso, preferivano condividere la ricompensa con i loro conspecifici. Tuttavia, la preferenza per le scelte altruistiche è stata modulata da fattori interni ed esterni come il sesso, la familiarità, la motivazione, l'empatia e la dominanza sociale. Inoltre, le nostre manipolazioni chemogenetiche inibitorie hanno dimostrato che l'amigdala basolaterale (BLA) è coinvolta nella formazione di una preferenza altruistica. In particolare, i neuroni BLA che proiettano alla regione prelimbica (PL) della corteccia prefrontale hanno mediato lo sviluppo di una preferenza per le scelte altruistiche, mentre le proiezioni da PL a BLA hanno determinato decisioni più egoistiche. Abbiamo anche dimostrato che i topi sono in grado di acquisire il task del SDM attraverso l'osservazione dei loro simili. In particolare, i topi che hanno osservato il task hanno mostrato prestazioni migliori rispetto ai loro compagni senza osservazione. A livello neurale, l'ippocampo dorsale (dCA1) si è dimostrato fondamentale per l'acquisizione dei processi decisionali sociali attraverso l'osservazione degli altri. Infatti, il silenziamento della regione dCA1, nonostante non abbia compromesso l’apprendimento procedurale del nostro task, ha rallentato considerevolmente la creazione di una preferenza sociale attraverso l’osservazione. Quindi, questo progetto di dottorato fa luce sui circuiti neurali alla base dei processi decisionali sociali tramite l'apprendimento diretto o osservazionale, con rilevanza per patologie come i disturbi neuropsichiatrici o neurodegenerativi spesso associati a disfunzioni sociali, inclusi i deficit decisionali sociali.

DISSECTING THE NEURAL CIRCUITRY BEHIND SOCIAL DECISION-MAKING PROCESSES BY DIRECT AND OBSERVATIONAL LEARNING

LA GRECA, FILIPPO
2023

Abstract

Humans are social animals that rarely live in complete isolation. Thus, human decisions often take the form of social decisions, regarding other social agents and possibly influenced by them. Social decision-making processes can lead, in turn, to relevant social manifestations such as altruistic or selfish behaviors that significantly determine our society. Humans can learn these behaviors by direct experience (ie, direct learning) or through the observation of others (ie, observational learning). However, the neurobiology underlying altruistic or selfish choices, either by direct or observational learning, is still unclear. In recent years, many studies described social decision-making processes and associated behaviors such as altruistic-like behaviors in nonhuman animals, including rodents. Moreover, rodents are able to learn spatial and affective tasks also by observing their similars. Thus, rodents offer the possibility to dissect in detail the neural bases of social decision-making processes either when these are learned by direct or observational learning. For my PhD project, we developed a social decision-making task (SDM) in which mice can decide whether to keep for themselves (ie, selfish choice) or share a reward with their conspecifics (ie, altruistic choice). We found that adult male mice overall preferred to share food with their similars. However, preference for altruistic choices was modulated by internal and external determinants such as sex, familiarity, motivation, empathy and social dominance. Besides, our inhibitory chemogenetic manipulations demonstrated that the basolateral amygdala (BLA) is involved in the establishment of altruistic decisions. In particular, BLA neurons projecting to the prelimbic (PL) region of the prefrontal cortex mediated the development of a preference for altruistic choices, whereas PL projections to the BLA produced a drift towards selfish acts. We also revealed that mice were able to acquire the SDM through observation. In particular, observer mice showed an enhanced performance compared to their conspecific demonstrators. At the neural level, we found that the dorsal region of the hippocampus (dCA1) was fundamental for the acquisition of social decision-making processes through others’ observation. Indeed, dCA1 silencing, while did not compromise the procedural learning of the SDM task, considerably slowed the establishment of a clear social preference through observation. Then, this PhD project sheds light on the neural circuitry underlying social decision-making processes either by direct or observational learning, with relevance to pathologies such as neuropsychiatric or neurodegenerative disorders often associated with social dysfunction, including social decision-making deficits.
5-apr-2023
Inglese
Gli esseri umani sono animali sociali che raramente vivono in completo isolamento. Pertanto, le nostre decisioni spesso prendono la forma di decisioni sociali, che riguardano altri interlocutori e possibilmente vengono influenzate da essi. I processi decisionali possono portare, a loro volta, a manifestazioni sociali rilevanti come i comportamenti altruistici o egoistici, i quali determinano in modo significativo la nostra società. Gli esseri umani possono apprendere questi comportamenti attraverso l'apprendimento diretto o attraverso l'osservazione degli altri, che prende il nome di apprendimento osservativo. Tuttavia, i fondamenti neurobiologici alla base delle scelte altruistiche o egoistiche, sia attraverso l'apprendimento diretto che attraverso l'osservazione, non sono ancora chiari. Negli ultimi anni, molti studi hanno descritto in animali non umani, inclusi i roditori, comportamenti che possono assomigliare all’altruismo. Inoltre, i roditori sono in grado di apprendere task spaziali e affettivi anche osservando i loro simili. Pertanto, i roditori offrono la possibilità di analizzare in dettaglio le basi neurali dei processi decisionali sociali sia quando queste vengono apprese tramite apprendimento diretto sia tramite osservazione. Per il mio progetto di dottorato, abbiamo sviluppato un task decisionale in ambito sociale (SDM) in cui i topi possono decidere se condividere (scelta altruistica) o no (scelta egoistica) una ricompensa con i loro conspecifici. Abbiamo osservato che i topi maschi adulti, nel complesso, preferivano condividere la ricompensa con i loro conspecifici. Tuttavia, la preferenza per le scelte altruistiche è stata modulata da fattori interni ed esterni come il sesso, la familiarità, la motivazione, l'empatia e la dominanza sociale. Inoltre, le nostre manipolazioni chemogenetiche inibitorie hanno dimostrato che l'amigdala basolaterale (BLA) è coinvolta nella formazione di una preferenza altruistica. In particolare, i neuroni BLA che proiettano alla regione prelimbica (PL) della corteccia prefrontale hanno mediato lo sviluppo di una preferenza per le scelte altruistiche, mentre le proiezioni da PL a BLA hanno determinato decisioni più egoistiche. Abbiamo anche dimostrato che i topi sono in grado di acquisire il task del SDM attraverso l'osservazione dei loro simili. In particolare, i topi che hanno osservato il task hanno mostrato prestazioni migliori rispetto ai loro compagni senza osservazione. A livello neurale, l'ippocampo dorsale (dCA1) si è dimostrato fondamentale per l'acquisizione dei processi decisionali sociali attraverso l'osservazione degli altri. Infatti, il silenziamento della regione dCA1, nonostante non abbia compromesso l’apprendimento procedurale del nostro task, ha rallentato considerevolmente la creazione di una preferenza sociale attraverso l’osservazione. Quindi, questo progetto di dottorato fa luce sui circuiti neurali alla base dei processi decisionali sociali tramite l'apprendimento diretto o osservazionale, con rilevanza per patologie come i disturbi neuropsichiatrici o neurodegenerativi spesso associati a disfunzioni sociali, inclusi i deficit decisionali sociali.
social decision-making; altruism; observational learning; amygdala; prefrontal cortex; hippocampus
SCHEGGIA, DIEGO
NORATA, GIUSEPPE DANILO
Università degli Studi di Milano
File in questo prodotto:
File Dimensione Formato  
phd_unimi_R12510.pdf

Open Access dal 17/09/2024

Dimensione 7.85 MB
Formato Adobe PDF
7.85 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/80541
Il codice NBN di questa tesi è URN:NBN:IT:UNIMI-80541