L’analisi di dati high-throughput basata sull’utilizzo di tecnologie di sequencing, microarray e spettrometria di massa si è dimostrata estremamente utile per l’identificazione di quei geni e proteine, chiamati biomarcatori, utili per rispondere a quesiti sia di tipo diagnostico/prognostico che funzionale. In tale contesto, la stabilità dei risultati è cruciale sia per capire i meccanismi biologici che caratterizzano le malattie sia per ottenere una sufficiente affidabilità per applicazioni in campo clinico/farmaceutico. Recentemente, diversi studi hanno dimostrato che le liste di biomarcatori identificati sono scarsamente riproducibili, rendendo la validazione di tali biomarcatori come indicatori stabili di una malattia un problema ancora aperto. Le ragioni di queste differenze sono imputabili sia alla dimensione dei dataset (pochi soggetti rispetto al numero di variabili) sia all’eterogeneità di malattie complesse, caratterizzate da alterazioni di più pathway di regolazione e delle interazioni tra diversi geni e l’ambiente. Tipicamente in un disegno sperimentale, i dati da analizzare provengono da diversi soggetti e diversi fenotipi (e.g. normali e patologici). Le metodologie maggiormente utilizzate per l’identificazione di geni legati ad una malattia si basano sull’analisi differenziale dell’espressione genica tra i diversi fenotipi usando test statistici univariati. Tale approccio fornisce le informazioni sull’effetto di specifici geni considerati come variabili indipendenti tra loro, mentre è ormai noto che l’interazione tra geni debolmente up/down regolati, sebbene non differenzialmente espressi, potrebbe rivelarsi estremamente importante per caratterizzare lo stato di una malattia. Gli algoritmi di machine learning sono, in linea di principio, capaci di identificare combinazioni non lineari delle variabili e hanno quindi la possibilità di selezionare un insieme più dettagliato di geni che sono sperimentalmente rilevanti. In tale contesto, i metodi di classificazione supervisionata vengono spesso utilizzati per selezionare i biomarcatori, e diversi approcci, quali discriminant analysis, random forests e support vector machines tra altri, sono stati utilizzati, soprattutto in studi oncologici. Sebbene con tali approcci di classificazione si ottenga un alto livello di accuratezza di predizione, la riproducibilità delle liste di biomarcatori rimane ancora una questione aperta, dato che esistono molteplici set di variabili biologiche (i.e. geni o proteine) che possono essere considerati ugualmente rilevanti in termini di predizione. Quindi in teoria è possibile avere un’insufficiente stabilità anche raggiungendo il massimo livello di accuratezza. Questa tesi rappresenta uno studio su diversi aspetti computazionali legati all’identificazione di biomarcatori in genomica: dalle strategie di classificazione e di feature selection adottate alla tipologia e affidabilità dell’informazione biologica utilizzata, proponendo nuovi approcci in grado di affrontare il problema della riproducibilità delle liste di biomarcatori. Tale studio ha evidenziato che sebbene un’accettabile e comparabile accuratezza nella predizione può essere ottenuta attraverso diversi metodi, ulteriori sviluppi sono necessari per raggiungere una robusta stabilità nelle liste di biomarcatori, a causa dell’alto numero di variabili e dell’alto livello di correlazione tra loro. In particolare, questa tesi propone due diversi approcci per migliorare la stabilità delle liste di biomarcatori usando l’informazione a priori legata alle interazioni biologiche e alla correlazione funzionale tra le features analizzate. Entrambi gli approcci sono stati in grado di migliorare la selezione di biomarcatori. Il primo approccio, usando l’informazione a priori per dividere l’applicazione del metodo in diversi sottoproblemi, migliora l’interpretabilità dei risultati e offre un modo alternativo per verificare la riproducibilità delle liste. Il secondo, integrando l’informazione a priori in una funzione kernel dell’algoritmo di learning, migliora la stabilità delle liste. Infine, l’interpretabilità dei risultati è fortemente influenzata dalla qualità dell’informazione biologica disponibile e l’analisi delle eterogeneità delle annotazioni effettuata sul database Gene Ontology rivela l’importanza di fornire nuovi metodi in grado di verificare l’attendibilità delle proprietà biologiche che vengono assegnate ad una specifica variabile, distinguendo la mancanza o la minore specificità di informazione da possibili inconsistenze tra le annotazioni. Questi aspetti verranno sempre più approfonditi in futuro, dato che le nuove tecnologie di sequencing monitoreranno un maggior numero di variabili e il numero di annotazioni funzionali derivanti dai database genomici crescer`a considerevolmente nei prossimi anni.
Biomarker lists stability in genomic studies: analysis and improvement by prior biological knowledge integration into the learning process
SANAVIA, TIZIANA
2012
Abstract
L’analisi di dati high-throughput basata sull’utilizzo di tecnologie di sequencing, microarray e spettrometria di massa si è dimostrata estremamente utile per l’identificazione di quei geni e proteine, chiamati biomarcatori, utili per rispondere a quesiti sia di tipo diagnostico/prognostico che funzionale. In tale contesto, la stabilità dei risultati è cruciale sia per capire i meccanismi biologici che caratterizzano le malattie sia per ottenere una sufficiente affidabilità per applicazioni in campo clinico/farmaceutico. Recentemente, diversi studi hanno dimostrato che le liste di biomarcatori identificati sono scarsamente riproducibili, rendendo la validazione di tali biomarcatori come indicatori stabili di una malattia un problema ancora aperto. Le ragioni di queste differenze sono imputabili sia alla dimensione dei dataset (pochi soggetti rispetto al numero di variabili) sia all’eterogeneità di malattie complesse, caratterizzate da alterazioni di più pathway di regolazione e delle interazioni tra diversi geni e l’ambiente. Tipicamente in un disegno sperimentale, i dati da analizzare provengono da diversi soggetti e diversi fenotipi (e.g. normali e patologici). Le metodologie maggiormente utilizzate per l’identificazione di geni legati ad una malattia si basano sull’analisi differenziale dell’espressione genica tra i diversi fenotipi usando test statistici univariati. Tale approccio fornisce le informazioni sull’effetto di specifici geni considerati come variabili indipendenti tra loro, mentre è ormai noto che l’interazione tra geni debolmente up/down regolati, sebbene non differenzialmente espressi, potrebbe rivelarsi estremamente importante per caratterizzare lo stato di una malattia. Gli algoritmi di machine learning sono, in linea di principio, capaci di identificare combinazioni non lineari delle variabili e hanno quindi la possibilità di selezionare un insieme più dettagliato di geni che sono sperimentalmente rilevanti. In tale contesto, i metodi di classificazione supervisionata vengono spesso utilizzati per selezionare i biomarcatori, e diversi approcci, quali discriminant analysis, random forests e support vector machines tra altri, sono stati utilizzati, soprattutto in studi oncologici. Sebbene con tali approcci di classificazione si ottenga un alto livello di accuratezza di predizione, la riproducibilità delle liste di biomarcatori rimane ancora una questione aperta, dato che esistono molteplici set di variabili biologiche (i.e. geni o proteine) che possono essere considerati ugualmente rilevanti in termini di predizione. Quindi in teoria è possibile avere un’insufficiente stabilità anche raggiungendo il massimo livello di accuratezza. Questa tesi rappresenta uno studio su diversi aspetti computazionali legati all’identificazione di biomarcatori in genomica: dalle strategie di classificazione e di feature selection adottate alla tipologia e affidabilità dell’informazione biologica utilizzata, proponendo nuovi approcci in grado di affrontare il problema della riproducibilità delle liste di biomarcatori. Tale studio ha evidenziato che sebbene un’accettabile e comparabile accuratezza nella predizione può essere ottenuta attraverso diversi metodi, ulteriori sviluppi sono necessari per raggiungere una robusta stabilità nelle liste di biomarcatori, a causa dell’alto numero di variabili e dell’alto livello di correlazione tra loro. In particolare, questa tesi propone due diversi approcci per migliorare la stabilità delle liste di biomarcatori usando l’informazione a priori legata alle interazioni biologiche e alla correlazione funzionale tra le features analizzate. Entrambi gli approcci sono stati in grado di migliorare la selezione di biomarcatori. Il primo approccio, usando l’informazione a priori per dividere l’applicazione del metodo in diversi sottoproblemi, migliora l’interpretabilità dei risultati e offre un modo alternativo per verificare la riproducibilità delle liste. Il secondo, integrando l’informazione a priori in una funzione kernel dell’algoritmo di learning, migliora la stabilità delle liste. Infine, l’interpretabilità dei risultati è fortemente influenzata dalla qualità dell’informazione biologica disponibile e l’analisi delle eterogeneità delle annotazioni effettuata sul database Gene Ontology rivela l’importanza di fornire nuovi metodi in grado di verificare l’attendibilità delle proprietà biologiche che vengono assegnate ad una specifica variabile, distinguendo la mancanza o la minore specificità di informazione da possibili inconsistenze tra le annotazioni. Questi aspetti verranno sempre più approfonditi in futuro, dato che le nuove tecnologie di sequencing monitoreranno un maggior numero di variabili e il numero di annotazioni funzionali derivanti dai database genomici crescer`a considerevolmente nei prossimi anni.File | Dimensione | Formato | |
---|---|---|---|
Sanavia.pdf
accesso aperto
Dimensione
7.44 MB
Formato
Adobe PDF
|
7.44 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/80900
URN:NBN:IT:UNIPD-80900