L’adenosina è un neuromodulatore che regola molti processi fisiopatologici attraverso l’attivazione di quattro diversi recettori accoppiati a proteine G (GPCRs), classificati come sottotipi A1, A2A, A2B e A3. I recettori adenosinici sono ubiquitari nell’organismo umano e la loro attivazione è responsabile di numerosi effetti in diversi organi. Proprio per questo motivo la regolazione dell’attività di questi recettori può avere interessanti applicazioni terapeutiche. Il principale obiettivo di questo progetto è stato l’analisi in silico a livello molecolare dei recettori adenosinici, ed in particolare dei recettori adenosinici umani A2A e A3, per guidare la scoperta e l’ottimizzazione strutturale di nuovi antagonisti adenosinici potenti e selettivi. Le strutture cristallografiche del recettore adenosinico umano A2A, recentemente pubblicate, forniscono dettagliate informazioni strutturali utili per supportare studi di homology modeling e approcci di drug design di tipo structure-based. In particolare, la struttura cristallografica del recettore adenosinico umano A2A, in complesso con l’antagonista potente e selettivo ZM241385, è stata utilizzata come templato per la costruzione di un modello per omologia del recettore adenosinico umano A3. Inoltre, con l’intento di selezionare il protocollo di docking molecolare più adatto per la famiglia dei recettori adenosinici, la struttura cristallografica del recettore adenosinico A2A è stata utilizzata per effettuare simulazioni di docking con diversi softwares in parallelo. Successivamente, le conformazioni ottenute dal docking sono state confrontate con la pose cristallografica di ZM241385 per selezionare il protocollo di docking che fosse in grado di riprodurre al meglio questo sistema molecolare e che potesse quindi essere usato per i successivi studi di docking. Sono stati quindi effettuati studi di docking molecolare di vari antagonisti adenosinici sul modello del recettore A3 e sulla struttura cristallografica del recettore A2A, in modo da ricavare informazioni che potessero facilitare il processo di ottimizzazione dei composti. Sono stati infatti analizzati numerosi nuovi composti appartenenti a classi note di antagonisti adenosinici, tra cui composti triazolotriazinici e tirazolotriazolopirimidinici, in modo da suggerire modifiche strutturali in grado di modularne l’affinità nei confronti dei vari sottotipi recettoriali adenosinici, di aumentarne la solubilità o di superarne i punti di instabilità metabolica. Diversi derivati con strutture semplificate, come per esempio composti pirazolopirimidinonici, ftalazinonici e triazolotriazinici, sono stati inoltre proposti come nuovi composti con attività antagonista nei confronti dei recettori adenosinici. Le informazioni ricavate grazie agli studi di docking hanno permesso l’identificazione di caratteristiche strutturali degli antagonisti adenosinici fondamentali per l’interazione con questi recettori. Queste informazioni sono state quindi applicate alla progettazione di derivati fluorescenti per il recettore adenosinico A3, che risultano particolarmente interessanti per il loro potenziale utilizzo in saggi farmacologici. In conclusione, quindi, questo studio sui recettori adenosinici dimostra come l’integrazione di metodologie computazionali con il lavoro sintetico e farmacologico risulta essere una strategia efficace per lo sviluppo di nuovi ligandi dei recettori adenosinici, a potenziale interesse terapeutico, e per il chiarimento di importanti aspetti strutturali riguardanti questa famiglia recettoriale e più in generale tutti i GPCRs.

Designing adenosine receptors antagonists using an in silico approach

PAOLETTA, SILVIA
2012

Abstract

L’adenosina è un neuromodulatore che regola molti processi fisiopatologici attraverso l’attivazione di quattro diversi recettori accoppiati a proteine G (GPCRs), classificati come sottotipi A1, A2A, A2B e A3. I recettori adenosinici sono ubiquitari nell’organismo umano e la loro attivazione è responsabile di numerosi effetti in diversi organi. Proprio per questo motivo la regolazione dell’attività di questi recettori può avere interessanti applicazioni terapeutiche. Il principale obiettivo di questo progetto è stato l’analisi in silico a livello molecolare dei recettori adenosinici, ed in particolare dei recettori adenosinici umani A2A e A3, per guidare la scoperta e l’ottimizzazione strutturale di nuovi antagonisti adenosinici potenti e selettivi. Le strutture cristallografiche del recettore adenosinico umano A2A, recentemente pubblicate, forniscono dettagliate informazioni strutturali utili per supportare studi di homology modeling e approcci di drug design di tipo structure-based. In particolare, la struttura cristallografica del recettore adenosinico umano A2A, in complesso con l’antagonista potente e selettivo ZM241385, è stata utilizzata come templato per la costruzione di un modello per omologia del recettore adenosinico umano A3. Inoltre, con l’intento di selezionare il protocollo di docking molecolare più adatto per la famiglia dei recettori adenosinici, la struttura cristallografica del recettore adenosinico A2A è stata utilizzata per effettuare simulazioni di docking con diversi softwares in parallelo. Successivamente, le conformazioni ottenute dal docking sono state confrontate con la pose cristallografica di ZM241385 per selezionare il protocollo di docking che fosse in grado di riprodurre al meglio questo sistema molecolare e che potesse quindi essere usato per i successivi studi di docking. Sono stati quindi effettuati studi di docking molecolare di vari antagonisti adenosinici sul modello del recettore A3 e sulla struttura cristallografica del recettore A2A, in modo da ricavare informazioni che potessero facilitare il processo di ottimizzazione dei composti. Sono stati infatti analizzati numerosi nuovi composti appartenenti a classi note di antagonisti adenosinici, tra cui composti triazolotriazinici e tirazolotriazolopirimidinici, in modo da suggerire modifiche strutturali in grado di modularne l’affinità nei confronti dei vari sottotipi recettoriali adenosinici, di aumentarne la solubilità o di superarne i punti di instabilità metabolica. Diversi derivati con strutture semplificate, come per esempio composti pirazolopirimidinonici, ftalazinonici e triazolotriazinici, sono stati inoltre proposti come nuovi composti con attività antagonista nei confronti dei recettori adenosinici. Le informazioni ricavate grazie agli studi di docking hanno permesso l’identificazione di caratteristiche strutturali degli antagonisti adenosinici fondamentali per l’interazione con questi recettori. Queste informazioni sono state quindi applicate alla progettazione di derivati fluorescenti per il recettore adenosinico A3, che risultano particolarmente interessanti per il loro potenziale utilizzo in saggi farmacologici. In conclusione, quindi, questo studio sui recettori adenosinici dimostra come l’integrazione di metodologie computazionali con il lavoro sintetico e farmacologico risulta essere una strategia efficace per lo sviluppo di nuovi ligandi dei recettori adenosinici, a potenziale interesse terapeutico, e per il chiarimento di importanti aspetti strutturali riguardanti questa famiglia recettoriale e più in generale tutti i GPCRs.
31-gen-2012
Inglese
Recettori Adenosinici, homology modeling, docking molecolare, GPCR, antagonisti adenosinici, antagonisti fluorescenti / Adenosine receptors, homology modeling, molecular docking, GPCR, adenosine receptors antagonists, fluorescent antagonists
MORO, STEFANO
Università degli studi di Padova
File in questo prodotto:
File Dimensione Formato  
tesi_dottorato.pdf

accesso aperto

Dimensione 33.13 MB
Formato Adobe PDF
33.13 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/80960
Il codice NBN di questa tesi è URN:NBN:IT:UNIPD-80960