Il perossido di idrogeno è un potente agente ossidante, molto usato nella pratica industriale. E’ uno dei meno tossici, dal momento che l’unico sottoprodotto della sua ossidazione è l’acqua. A livello mondiale, la domanda di H2O2 è in costante aumento, non da ultimo grazie a recenti usi in nuovi processi ossidativi, quali l’epossidazione del propilene e la sintesi del caprolattame. Attualmente l’acqua ossigenata viene prodotta quasi esclusivamente attraverso l’auto-ossidazione dell’antrachinone. Sebbene molto sicuro (non vi è mai contatto diretto tra idrogeno ed ossigeno), questo processo presenta alcuni svantaggi, quali ad esempio gli alti costi di esercizio, dovuti in particolare all’alta richiesta energetica per la separazione e la purificazione del perossido prodotto. Si tratta inoltre di un processo potenzialmente inquinante, in quanto fa uso di costosi solventi tossici, e dagli alti costi d’investimento, essendo economicamente vantaggioso solo per grandi produzioni (>4*104 tonnellate all’anno). Pertanto l’H2O2 è attualmente prodotta in pochi grandi impianti e trasferita per grandi distanze all’utente finale. Il trasporto aggiunge costi e rischi, in quanto soluzioni concentrate di H2O2 possono decomporre violentemente. Nelle ultime decadi vi è stato un notevole interesse nella ricerca di nuovi processi di produzione del perossido di idrogeno, che fossero contemporaneamente meno costosi ed inquinanti. Tra le varie alternative proposte, la più affascinante è sicuramente la sintesi diretta a partire da H2 ed O2. Si tratta di un processo “verde”, che si propone di eliminare i sottoprodotti inquinanti e, allo stesso tempo, ridurre i costi di produzione, rendendo economicamente vantaggiosa la produzione in situ presso l’utilizzatore finale. Nonostante il grande interesse sia industriale che accademico suscitato da tale processo negli ultimi trent’anni, a tutt’oggi non vi è nessuna applicazione industriale. Il motivo di ciò è da ricercarsi principalmente nei problemi di sicurezza e selettività che a tutt’ora restano irrisolti. La mancanza di informazioni sulla solubilità dei reagenti alle condizioni di reazione rende difficoltoso ottenere una descrizione cinetica precisa delle reazioni coinvolte nella sintesi diretta. Pertanto i primi passi della ricerca qui presentata sono stati mossi con l’obiettivo di raccogliere dati di solubilità alle condizioni di reazione (temperatura compresa tra i 268 e i 288 K e pressione tra 0.37 e 3.5 MPa). In particolare, si era interessati all’H2, in quanto reagente limitante del processo. A tutte le condizioni indagate, è stata riscontrata una relazione lineare tra la pressione parziale e la concentrazione di H2. Contrariamente a quanto normalmente avviene, l’incremento di temperatura ha avuto l’effetto di aumentare la solubilità nella fase liquida (a parità di pressione parziale). Inoltre, a parità di fugacità di H2, la presenza di CO2 ha favorito la concentrazione dell’H2 nel liquido. I risultati ottenuti sono stati generalizzati sviluppando un modello per stimare la solubilità dell’H2 alle condizioni di reazione. E’ stato poi realizzato un apparato batch per la sintesi diretta di acqua ossigenata. Un catalizzatore commerciale a base di Pd (5 wt.%) su carbone è stato utilizzato per studiare le reazioni di idrogenazioni, dismutazione e sintesi a temperature comprese tra 258 e 313 K e pressioni fino a 2.0 MPa. Il ruolo di ciascuna reazione è stato studiato attraverso esperimenti specifici. Appropriate politiche di alimentazione dell’H2 hanno permesso di realizzare un aumento di produzione rispetto a condizioni tipicamente batch. Tuttavia il catalizzatore testato ha rivelato limiti di selettività, non superando valori del 30% ca. Per studiare le cinetiche di reazione, è stato sviluppato un modello per il reattore batch. Un’analisi di sensitività sui coefficienti di trasporto di materia (sia dalla fase gassosa alla liquida che dalla liquida al catalizzatore) ha permesso di escludere ogni limitazione tra le fasi coinvolte nelle reazioni. Le reazioni indesiderate (formazione di H2O, dismutazione ed idrogenazione) hanno rivelato una simile dipendenza dalla temperatura (con un’energia di attivazione di circa 45 kJ mol-1). Una minore energia di attivazione è stata ottenuta per la reazione di sintesi diretta di H2O2 (24 kJ mol-1), il che suggerisce che la selettività è favorita alle basse temperature. Un confronto tra le velocità delle reazioni coinvolte ha permesso di identificare la dismutazione come la reazione più lenta di distruzione del perossido. Inoltre, la formazione di acqua era sempre significativa, compromettendo la selettività. A seguito di questi risultati, si è deciso di focalizzare l’attenzione sul catalizzatore. Catalizzatori mono e bi-metallici sono stati realizzati depositando Pd e PdAu su SBA15, una silice macroporosa e strutturata. Tali catalizzatori sono stati anche dopati con l’aggiunta di bromo, un noto promotore della reazione di sintesi diretta. Sia la selettività che la produttività sono diminuite modificando i catalizzatori con l’alogenio, probabilmente a causa di un avvelenamento durante la procedura di innesto del bromo. Una sinergia tra i metalli Pd e Au è stata osservata sia nei catalizzatori con e che senza bromo. Tre modifiche sono state apportate al miglior catalizzatore sviluppato (PdAu/SBA15) per evidenziare l’influenza delle proprietà superficiali sulla reazione di sintesi diretta. Tre modificatori sono stati incorporati nel supporto: Al, CeO2 e Ti. Un aumento sia di selettività che di produttività è stato riscontrato solo con l’aggiunta di Al. Tale risultato è stato attribuito al maggior numero di siti acidi di Brønsted riscontrati su questo catalizzatore. Un'altra famiglia di catalizzatori, con un contenuto di metallo attivo variabile tra lo 0.3 ed il 5 wt.%, è stata sintetizzata depositando del Pd su una resina acida e macroporosa, miscela di PS e DVB. I risultati preliminari dei test catalitici e delle analisi di spettroscopia fotoelettronica a raggi X (XPS) hanno rivelato che lo stato di ossidazione del palladio più selettivo verso il perossido è quello ridotto, mentre il PdO porta più facilmente alla formazione di H2O. Le immagini al microscopio elettronico a trasmissione (TEM) hanno mostrato che i nanocluster di Pd più piccoli portato alla formazione preferenziale di H2O, il che è probabilmente legato alla loro propensione alla rottura del legame O-O

Engineering the catalytic batchwise synthesis of H2O2 from its elements

GEMO, NICOLA
2013

Abstract

Il perossido di idrogeno è un potente agente ossidante, molto usato nella pratica industriale. E’ uno dei meno tossici, dal momento che l’unico sottoprodotto della sua ossidazione è l’acqua. A livello mondiale, la domanda di H2O2 è in costante aumento, non da ultimo grazie a recenti usi in nuovi processi ossidativi, quali l’epossidazione del propilene e la sintesi del caprolattame. Attualmente l’acqua ossigenata viene prodotta quasi esclusivamente attraverso l’auto-ossidazione dell’antrachinone. Sebbene molto sicuro (non vi è mai contatto diretto tra idrogeno ed ossigeno), questo processo presenta alcuni svantaggi, quali ad esempio gli alti costi di esercizio, dovuti in particolare all’alta richiesta energetica per la separazione e la purificazione del perossido prodotto. Si tratta inoltre di un processo potenzialmente inquinante, in quanto fa uso di costosi solventi tossici, e dagli alti costi d’investimento, essendo economicamente vantaggioso solo per grandi produzioni (>4*104 tonnellate all’anno). Pertanto l’H2O2 è attualmente prodotta in pochi grandi impianti e trasferita per grandi distanze all’utente finale. Il trasporto aggiunge costi e rischi, in quanto soluzioni concentrate di H2O2 possono decomporre violentemente. Nelle ultime decadi vi è stato un notevole interesse nella ricerca di nuovi processi di produzione del perossido di idrogeno, che fossero contemporaneamente meno costosi ed inquinanti. Tra le varie alternative proposte, la più affascinante è sicuramente la sintesi diretta a partire da H2 ed O2. Si tratta di un processo “verde”, che si propone di eliminare i sottoprodotti inquinanti e, allo stesso tempo, ridurre i costi di produzione, rendendo economicamente vantaggiosa la produzione in situ presso l’utilizzatore finale. Nonostante il grande interesse sia industriale che accademico suscitato da tale processo negli ultimi trent’anni, a tutt’oggi non vi è nessuna applicazione industriale. Il motivo di ciò è da ricercarsi principalmente nei problemi di sicurezza e selettività che a tutt’ora restano irrisolti. La mancanza di informazioni sulla solubilità dei reagenti alle condizioni di reazione rende difficoltoso ottenere una descrizione cinetica precisa delle reazioni coinvolte nella sintesi diretta. Pertanto i primi passi della ricerca qui presentata sono stati mossi con l’obiettivo di raccogliere dati di solubilità alle condizioni di reazione (temperatura compresa tra i 268 e i 288 K e pressione tra 0.37 e 3.5 MPa). In particolare, si era interessati all’H2, in quanto reagente limitante del processo. A tutte le condizioni indagate, è stata riscontrata una relazione lineare tra la pressione parziale e la concentrazione di H2. Contrariamente a quanto normalmente avviene, l’incremento di temperatura ha avuto l’effetto di aumentare la solubilità nella fase liquida (a parità di pressione parziale). Inoltre, a parità di fugacità di H2, la presenza di CO2 ha favorito la concentrazione dell’H2 nel liquido. I risultati ottenuti sono stati generalizzati sviluppando un modello per stimare la solubilità dell’H2 alle condizioni di reazione. E’ stato poi realizzato un apparato batch per la sintesi diretta di acqua ossigenata. Un catalizzatore commerciale a base di Pd (5 wt.%) su carbone è stato utilizzato per studiare le reazioni di idrogenazioni, dismutazione e sintesi a temperature comprese tra 258 e 313 K e pressioni fino a 2.0 MPa. Il ruolo di ciascuna reazione è stato studiato attraverso esperimenti specifici. Appropriate politiche di alimentazione dell’H2 hanno permesso di realizzare un aumento di produzione rispetto a condizioni tipicamente batch. Tuttavia il catalizzatore testato ha rivelato limiti di selettività, non superando valori del 30% ca. Per studiare le cinetiche di reazione, è stato sviluppato un modello per il reattore batch. Un’analisi di sensitività sui coefficienti di trasporto di materia (sia dalla fase gassosa alla liquida che dalla liquida al catalizzatore) ha permesso di escludere ogni limitazione tra le fasi coinvolte nelle reazioni. Le reazioni indesiderate (formazione di H2O, dismutazione ed idrogenazione) hanno rivelato una simile dipendenza dalla temperatura (con un’energia di attivazione di circa 45 kJ mol-1). Una minore energia di attivazione è stata ottenuta per la reazione di sintesi diretta di H2O2 (24 kJ mol-1), il che suggerisce che la selettività è favorita alle basse temperature. Un confronto tra le velocità delle reazioni coinvolte ha permesso di identificare la dismutazione come la reazione più lenta di distruzione del perossido. Inoltre, la formazione di acqua era sempre significativa, compromettendo la selettività. A seguito di questi risultati, si è deciso di focalizzare l’attenzione sul catalizzatore. Catalizzatori mono e bi-metallici sono stati realizzati depositando Pd e PdAu su SBA15, una silice macroporosa e strutturata. Tali catalizzatori sono stati anche dopati con l’aggiunta di bromo, un noto promotore della reazione di sintesi diretta. Sia la selettività che la produttività sono diminuite modificando i catalizzatori con l’alogenio, probabilmente a causa di un avvelenamento durante la procedura di innesto del bromo. Una sinergia tra i metalli Pd e Au è stata osservata sia nei catalizzatori con e che senza bromo. Tre modifiche sono state apportate al miglior catalizzatore sviluppato (PdAu/SBA15) per evidenziare l’influenza delle proprietà superficiali sulla reazione di sintesi diretta. Tre modificatori sono stati incorporati nel supporto: Al, CeO2 e Ti. Un aumento sia di selettività che di produttività è stato riscontrato solo con l’aggiunta di Al. Tale risultato è stato attribuito al maggior numero di siti acidi di Brønsted riscontrati su questo catalizzatore. Un'altra famiglia di catalizzatori, con un contenuto di metallo attivo variabile tra lo 0.3 ed il 5 wt.%, è stata sintetizzata depositando del Pd su una resina acida e macroporosa, miscela di PS e DVB. I risultati preliminari dei test catalitici e delle analisi di spettroscopia fotoelettronica a raggi X (XPS) hanno rivelato che lo stato di ossidazione del palladio più selettivo verso il perossido è quello ridotto, mentre il PdO porta più facilmente alla formazione di H2O. Le immagini al microscopio elettronico a trasmissione (TEM) hanno mostrato che i nanocluster di Pd più piccoli portato alla formazione preferenziale di H2O, il che è probabilmente legato alla loro propensione alla rottura del legame O-O
30-gen-2013
Inglese
hydrogen peroxide direct synthesis, green chemistry, hydrogen solubility, palladium, batch reactor modeling, catalysis
CANU, PAOLO
COLOMBO, PAOLO
Università degli studi di Padova
File in questo prodotto:
File Dimensione Formato  
gemo_nicola_tesi.pdf

accesso aperto

Dimensione 7.3 MB
Formato Adobe PDF
7.3 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/81005
Il codice NBN di questa tesi è URN:NBN:IT:UNIPD-81005