I mitocondri sono organelli cellulari che svolgono un ruolo cruciale nella produzione di ATP, nel metabolismo, nella regolazione di segnali cellulari e nell'amplificazione della morte cellulare programmata (Wasilewski e Scorrano, 2009). Nel processo di apoptosi i mitocondri rilasciano citocromo c e altri cofattori necessari ad amplificare la morte cellulare (Li et al., 1997). Il rilascio completo del citocromo c dipende dai cambiamenti nella forma e nell’ultrastruttura dell’organello, poiché durante questi processi la complessa rete mitocondriale subisce frammentazione, accompagnata dall’alterazione strutturale e dall’ampliamento delle giunzioni delle creste mitocondriali (Frank et al, 2001;. Scorrano et al., 2002). Da notare che una mancata o alterata regolazione dell'apoptosi rappresenta una delle caratteristiche tipiche del cancro, poiché le cellule tumorali sfruttano l'inibizione della via apoptotica mitocondriale per acquisire il fenotipo maligno (Thompson, 1995). I mitocondri sono organelli dinamici. Tutti i processi che incidono sui cambiamenti nella forma e nell’ultrastruttura dell’organello sono controllati dall'azione coordinata di una coorte di proteine chiamate mitochondria-shaping proteins, le quali rappresentano grandi GTPasi che condividono omologia strutturale con la famiglia delle dinamine (Dimmer e Scorrano, 2006). La forma mitocondriale nello stato stazionario è il risultato dell'azione equilibrata di eventi di fissione e fusione (Griparic e van der Bliek, 2001). Il processo di fissione mitocondriale è controllato dall'azione sincrona di una proteina citosolica Drp1 (Dynamin-related protein 1) (Cereghetti et al, 2008), che viene reclutata sulla membrana mitocondriale esterna dove interagisce con i suoi adattatori Fis1 (Fission - 1), MFF (Mitochondrial Fission Factor), Mid49 e Mid51 (Mitochondrial Division 49 e Mitochondrial Division51) e partecipa alla divisione dei mitocondri (Palmer et al., 2011). La fusione mitocondriale, invece, è un processo controllato dalle Mitofusine (Mfn1 e MFN2) - proteine localizzate nella membrana mitocondriale esterna – e da Optic Atrophy 1 (Opa1), la sola GTPasi responsabile della forma mitocondriale localizzata nella membrana mitocondriale interna (Santel e Fuller, 2001; Chen et al., 2003; Cipolat et al, 2004). Negli esseri umani, lo splicing alternativo di Opa1 dà luogo a 8 varianti di splicing diverse. Queste varianti di splicing possono essere ulteriormente modificate a livello post-trascrizionale dall’azione di proteasi che danno luogo a 2 forme lunghe e 3 forme brevi di Opa1 (Olichon et al, 2007;. Duvezin-Caubet et al., 2007). Opa1 è una proteina multifunzionale: indipendentemente dalla sua funzione nel promuovere la fusione dei mitocondri, svolge anche un ruolo nel controllo dell'apoptosi, mantenendo sotto controllo la struttura e la forma delle creste mitocondriali, formando complessi multimerici localizzati alle giunzioni delle creste stesse (Cipolat et al., 2004; Frezza et al, 2006; Cipolat et al, 2006). Un altro ruolo importante di Opa1 è nel controllo del metabolismo mitocondriale, perché favorisce l’associazione dei complessi della catena respiratoria mitocondriale in supercomplessi, aumentando in questo modo l'efficienza della fosforilazione ossidativa (Cogliati et al., 2013). Tutte queste funzioni concorrono a determinare il risultato benefico di una sua lieve sovraespressione in vivo, che, infatti, è protettiva in caso di ischemia cerebrale o cardiaca, atrofia muscolare indotta da denervazione e in caso di epatite fulminante (Varanita et al., 2015). Inoltre, la sovraespressione di OPA1 corregge alcuni modelli murini di disfunzione mitocondriale primaria causata da difetti nei componenti della catena respiratoria (Civiletto et al., 2015). Tuttavia, tutti questi effetti benefici hanno una controparte negativa. Infatti, alcuni studi hanno mostrato come Opa1 sia sovraespressa in diversi tumori umani, in cui elevati livelli di Opa1 sono correlati ad una peggiore prognosi e una risposta alterata alle terapie anti-tumorali (Fang et al., 2012). Al contrario, la riduzione dell’espressione di Opa1 è stata associata all’induzione di apoptosi nelle cellule tumorali tramite la via mitocondriale e ad un migliore esito clinico (Zhao et al, 2013). In questa Tesi abbiamo deciso di investigare quale ruolo biologico giochi Opa1 nell'acquisizione e nel mantenimento del fenotipo tumorale, sia in modelli cellulari che animali, ipotizzando che una possibile spiegazione per la mancata sovraespressione costitutiva di Opa1 sia che tale sovraespressione potrebbe essere legata ad un aumento di suscettibilità allo sviluppo e/o progressione di forme tumorali. Abbiamo utilizzato linee cellulari, derivanti da pazienti con diagnosi di linfoma diffuso a grandi cellule B (DLBCL) come sistema modello in vitro. I linfomi diffusi a grandi cellule B (DLBCL) sono tra le forme più comuni di neoplasie linfoidi non-Hodgkin negli adulti (Lohr et al., 2012). Sono un gruppo geneticamente eterogeneo di tumori che possono essere ulteriormente suddivisi in diversi sottogruppi in base a caratteristiche molecolari distinte (Alizadeh et al., 2000). Attraverso un approccio basato su Genome wide array e molteplici algoritmi di clustering sono stati caratterizzati due gruppi di linfomi: il primo presenta la sovraespressione di geni che codificano per i componenti del recettore delle cellule B – BCR (BCR-DLBCL), il secondo è rappresentato da un gruppo arricchito in geni coinvolti nella fosforilazione ossidativa mitocondriale (OxPhosS-DLBCL). Il sottoinsieme OxPhos manca di una rete intatta di segnalazione a valle del BCR, suggerendo la dipendenza da meccanismi di sopravvivenza alternativi, che non sono stati ancora definiti (Monti et al., 2005; Caro et al, 2012.). Attraverso un approccio di proteomica, volto a comprendere con cura i componenti del proteoma mitocondriale del gruppo BCR nei confronti del gruppo OxPhos, è stato osservato che i livelli di Opa1 nelle cellule OxPhos sono più alti (Danial N, manoscritto in preparazione). Per tale ragione abbiamo voluto chiarire quale ruolo giochi Opa1 in questi sottoinsiemi di cellule di cancro. Al fine di verificare se la sovraespressione di Opa1 contribuisca allo sviluppo e alla progressione del cancro in vivo, abbiamo utilizzato un modello noto e caratterizzato di linfoma in topo, il topo transgenico Eμ-myc (Adams et al., 1985). I topi Eμ-myc sono stati ulteriormente incrociati con un modello murino di sovraespressione Opa1, recentemente generato nel nostro laboratorio (Cogliati et al., 2013). Il risultato di questo incrocio ha generato il modello di topo che abbiamo usato nel nostro studio. In questa Tesi presentiamo prove che Opa1 è processata in forme più brevi nel sottoinsieme di DLBCL caratterizzato dalla sovraespressione di componenti del BCR e che, come risultato, la morfologia mitocondriale, il metabolismo e l’ultrastruttura sono diversi tra i sottoinsiemi BCR e OxPhos. Inoltre, mostriamo anche la prova di una marcata sinergia tra Opa1 e c-Myc in modelli murini transgenici, dove la sovraespressione di Opa1 contribuisce e aggrava lo sviluppo di cancro nel modello murino Eμ-Myc. Il lavoro svolto in questa Tesi mette in evidenza un ruolo per Opa1 nel definire le caratteristiche dei linfomi diffusi a grandi cellule B (DLBCL) e nella progressione dei tumori in vivo. In conclusione, i nostri dati indicano che Opa1 mostra caratteristiche pro-oncogeniche e che può essere presa in considerazione come nuovo bersaglio terapeutico per il trattamento del cancro.
In vitro and in vivo study of the role of the mitochondria-shaping protein Opa1 in cancer
SAMARDZIC, DIJANA
2016
Abstract
I mitocondri sono organelli cellulari che svolgono un ruolo cruciale nella produzione di ATP, nel metabolismo, nella regolazione di segnali cellulari e nell'amplificazione della morte cellulare programmata (Wasilewski e Scorrano, 2009). Nel processo di apoptosi i mitocondri rilasciano citocromo c e altri cofattori necessari ad amplificare la morte cellulare (Li et al., 1997). Il rilascio completo del citocromo c dipende dai cambiamenti nella forma e nell’ultrastruttura dell’organello, poiché durante questi processi la complessa rete mitocondriale subisce frammentazione, accompagnata dall’alterazione strutturale e dall’ampliamento delle giunzioni delle creste mitocondriali (Frank et al, 2001;. Scorrano et al., 2002). Da notare che una mancata o alterata regolazione dell'apoptosi rappresenta una delle caratteristiche tipiche del cancro, poiché le cellule tumorali sfruttano l'inibizione della via apoptotica mitocondriale per acquisire il fenotipo maligno (Thompson, 1995). I mitocondri sono organelli dinamici. Tutti i processi che incidono sui cambiamenti nella forma e nell’ultrastruttura dell’organello sono controllati dall'azione coordinata di una coorte di proteine chiamate mitochondria-shaping proteins, le quali rappresentano grandi GTPasi che condividono omologia strutturale con la famiglia delle dinamine (Dimmer e Scorrano, 2006). La forma mitocondriale nello stato stazionario è il risultato dell'azione equilibrata di eventi di fissione e fusione (Griparic e van der Bliek, 2001). Il processo di fissione mitocondriale è controllato dall'azione sincrona di una proteina citosolica Drp1 (Dynamin-related protein 1) (Cereghetti et al, 2008), che viene reclutata sulla membrana mitocondriale esterna dove interagisce con i suoi adattatori Fis1 (Fission - 1), MFF (Mitochondrial Fission Factor), Mid49 e Mid51 (Mitochondrial Division 49 e Mitochondrial Division51) e partecipa alla divisione dei mitocondri (Palmer et al., 2011). La fusione mitocondriale, invece, è un processo controllato dalle Mitofusine (Mfn1 e MFN2) - proteine localizzate nella membrana mitocondriale esterna – e da Optic Atrophy 1 (Opa1), la sola GTPasi responsabile della forma mitocondriale localizzata nella membrana mitocondriale interna (Santel e Fuller, 2001; Chen et al., 2003; Cipolat et al, 2004). Negli esseri umani, lo splicing alternativo di Opa1 dà luogo a 8 varianti di splicing diverse. Queste varianti di splicing possono essere ulteriormente modificate a livello post-trascrizionale dall’azione di proteasi che danno luogo a 2 forme lunghe e 3 forme brevi di Opa1 (Olichon et al, 2007;. Duvezin-Caubet et al., 2007). Opa1 è una proteina multifunzionale: indipendentemente dalla sua funzione nel promuovere la fusione dei mitocondri, svolge anche un ruolo nel controllo dell'apoptosi, mantenendo sotto controllo la struttura e la forma delle creste mitocondriali, formando complessi multimerici localizzati alle giunzioni delle creste stesse (Cipolat et al., 2004; Frezza et al, 2006; Cipolat et al, 2006). Un altro ruolo importante di Opa1 è nel controllo del metabolismo mitocondriale, perché favorisce l’associazione dei complessi della catena respiratoria mitocondriale in supercomplessi, aumentando in questo modo l'efficienza della fosforilazione ossidativa (Cogliati et al., 2013). Tutte queste funzioni concorrono a determinare il risultato benefico di una sua lieve sovraespressione in vivo, che, infatti, è protettiva in caso di ischemia cerebrale o cardiaca, atrofia muscolare indotta da denervazione e in caso di epatite fulminante (Varanita et al., 2015). Inoltre, la sovraespressione di OPA1 corregge alcuni modelli murini di disfunzione mitocondriale primaria causata da difetti nei componenti della catena respiratoria (Civiletto et al., 2015). Tuttavia, tutti questi effetti benefici hanno una controparte negativa. Infatti, alcuni studi hanno mostrato come Opa1 sia sovraespressa in diversi tumori umani, in cui elevati livelli di Opa1 sono correlati ad una peggiore prognosi e una risposta alterata alle terapie anti-tumorali (Fang et al., 2012). Al contrario, la riduzione dell’espressione di Opa1 è stata associata all’induzione di apoptosi nelle cellule tumorali tramite la via mitocondriale e ad un migliore esito clinico (Zhao et al, 2013). In questa Tesi abbiamo deciso di investigare quale ruolo biologico giochi Opa1 nell'acquisizione e nel mantenimento del fenotipo tumorale, sia in modelli cellulari che animali, ipotizzando che una possibile spiegazione per la mancata sovraespressione costitutiva di Opa1 sia che tale sovraespressione potrebbe essere legata ad un aumento di suscettibilità allo sviluppo e/o progressione di forme tumorali. Abbiamo utilizzato linee cellulari, derivanti da pazienti con diagnosi di linfoma diffuso a grandi cellule B (DLBCL) come sistema modello in vitro. I linfomi diffusi a grandi cellule B (DLBCL) sono tra le forme più comuni di neoplasie linfoidi non-Hodgkin negli adulti (Lohr et al., 2012). Sono un gruppo geneticamente eterogeneo di tumori che possono essere ulteriormente suddivisi in diversi sottogruppi in base a caratteristiche molecolari distinte (Alizadeh et al., 2000). Attraverso un approccio basato su Genome wide array e molteplici algoritmi di clustering sono stati caratterizzati due gruppi di linfomi: il primo presenta la sovraespressione di geni che codificano per i componenti del recettore delle cellule B – BCR (BCR-DLBCL), il secondo è rappresentato da un gruppo arricchito in geni coinvolti nella fosforilazione ossidativa mitocondriale (OxPhosS-DLBCL). Il sottoinsieme OxPhos manca di una rete intatta di segnalazione a valle del BCR, suggerendo la dipendenza da meccanismi di sopravvivenza alternativi, che non sono stati ancora definiti (Monti et al., 2005; Caro et al, 2012.). Attraverso un approccio di proteomica, volto a comprendere con cura i componenti del proteoma mitocondriale del gruppo BCR nei confronti del gruppo OxPhos, è stato osservato che i livelli di Opa1 nelle cellule OxPhos sono più alti (Danial N, manoscritto in preparazione). Per tale ragione abbiamo voluto chiarire quale ruolo giochi Opa1 in questi sottoinsiemi di cellule di cancro. Al fine di verificare se la sovraespressione di Opa1 contribuisca allo sviluppo e alla progressione del cancro in vivo, abbiamo utilizzato un modello noto e caratterizzato di linfoma in topo, il topo transgenico Eμ-myc (Adams et al., 1985). I topi Eμ-myc sono stati ulteriormente incrociati con un modello murino di sovraespressione Opa1, recentemente generato nel nostro laboratorio (Cogliati et al., 2013). Il risultato di questo incrocio ha generato il modello di topo che abbiamo usato nel nostro studio. In questa Tesi presentiamo prove che Opa1 è processata in forme più brevi nel sottoinsieme di DLBCL caratterizzato dalla sovraespressione di componenti del BCR e che, come risultato, la morfologia mitocondriale, il metabolismo e l’ultrastruttura sono diversi tra i sottoinsiemi BCR e OxPhos. Inoltre, mostriamo anche la prova di una marcata sinergia tra Opa1 e c-Myc in modelli murini transgenici, dove la sovraespressione di Opa1 contribuisce e aggrava lo sviluppo di cancro nel modello murino Eμ-Myc. Il lavoro svolto in questa Tesi mette in evidenza un ruolo per Opa1 nel definire le caratteristiche dei linfomi diffusi a grandi cellule B (DLBCL) e nella progressione dei tumori in vivo. In conclusione, i nostri dati indicano che Opa1 mostra caratteristiche pro-oncogeniche e che può essere presa in considerazione come nuovo bersaglio terapeutico per il trattamento del cancro.| File | Dimensione | Formato | |
|---|---|---|---|
|
samardzic_dijana_thesis.pdf
accesso aperto
Licenza:
Tutti i diritti riservati
Dimensione
19.4 MB
Formato
Adobe PDF
|
19.4 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/81107
URN:NBN:IT:UNIPD-81107