We prove the equivalence between the categories of motives of rigid analytic varieties over a perfectoid field K of mixed characteristic and over the associated (tilted) perfectoid field K♭ of equal characteristic. This can be considered as a motivic generalization of a theorem of Fontaine and Wintenberger, claiming that the Galois groups of K and K♭ are isomorphic. A main tool for constructing the equivalence is Scholze's theory of perfectoid spaces.
A MOTIVIC VERSION OF THE THEOREM OF FONTAINE AND WINTENBERGER
VEZZANI, ALBERTO
2014
Abstract
We prove the equivalence between the categories of motives of rigid analytic varieties over a perfectoid field K of mixed characteristic and over the associated (tilted) perfectoid field K♭ of equal characteristic. This can be considered as a motivic generalization of a theorem of Fontaine and Wintenberger, claiming that the Galois groups of K and K♭ are isomorphic. A main tool for constructing the equivalence is Scholze's theory of perfectoid spaces.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
phd_unimi_R08962.pdf
accesso aperto
Dimensione
900.04 kB
Formato
Adobe PDF
|
900.04 kB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/20.500.14242/81186
Il codice NBN di questa tesi è
URN:NBN:IT:UNIMI-81186