Oggigiorno, i modelli numerici ricoprono un ruolo di fondamentale importanza per lo studio di fenomeni fisici e naturali. Essi diventano via via sempre più complessi grazie all’aumento del numero di equazioni differenziali implementate in ciascun modello al fine di tener conto dei differenti aspetti che caratterizzano il fenomeno oggetto studio. Conseguentemente cresce anche il numero dei parametri da valutare per adattare i risultati ottenuti dal modello numerico alle misure reali. Tra tutti i fenomeni naturali che si possono considerare, i frane sono indiscutibilmente molto importanti. Tra i diversi tipi di frane, le colate sono una tipologia che si presenta sempre con maggior frequenza a causa dei cambiamenti climatici in atto e con effetti molto dannosi. Quando, poi, la velocità raggiunta in questi fenomeni diventa elevata, aumenta il loro potere distruttivo. I rischi e i danni che ne possono nascere non sono trascurabili, in modo particolare quando le colate avviene in prossimità di aree residenziali. Gli effetti catastrofici che ne possono scaturire spaziano dalla distruzione di edifici e infrastrutture, fino ad arrivare alla ancor più tragica perdita di vite umane. Quando si studia un movimento di colata, tre processi devono essere presi in considerazione: il meccanismo di innesco, la fase di propagazione ed infine il deposito. Questa tesi riguarda principalmente lo studio degli ultimi due processi che si verificano, cioè, quando il materiale ha già iniziato il suo movimento. Le fasi di propagazione e di arresto sono qui analizzate utilizzando un modello numerico sviluppato integrando le equazioni di Saint Venant per il flusso di un materiale monofase omogeneo in acque basse. Il modello è stato applicato sia per la simulazione di esperimenti di laboratorio sia per riprodurre un debris flow avvenuto nel nord Italia nel 2010. Quando si utilizza un modello numerico, la fase di calibrazione rappresenta un’operazione essenziale affinché si possano ottenere buoni risultati. I parametri utilizzati dal codice devono essere attentamente definiti in modo che il modello possa riprodurre il fenomeno fisico con elevata accuratezza. Quando i parametri hanno un significato fisico, risulta necessario controllare se il loro utilizzo, considerando le approssimazioni che il modello inevitabilmente comporta, permette di produrre risultati affidabili. A volte, tuttavia, i parametri che devono essere inseriti nel modello prescindono dalla natura fisica del caso in esame, ed hanno solamente un significato in termini matematici. Quando questo avviene, risulta ancor più importante calibrare il modello, cercando di cogliere l’intera complessità del fenomeno. Se la strategia di calibrazione non tiene conto dei vari aspetti che caratterizzano il caso di studio, infatti, i parametri ottenuti tramite back-analysis potrebbe non aver alcun senso. Questa tesi si pone l’obiettivo di sottolineare la complessità che può contraddistinguere il processo di calibrazione. Dopo aver deciso quale modello numerico utilizzare ed averne comprese possibilità e limitazioni, lo studio di casi di studio differenti permette di evidenziare le criticità e le problematiche che la back-analysis può presentare. A tale scopo, in questo lavoro vengono considerati principalmente tre casi di studio. Il primo riguarda il collasso di una colonna di materiale coesivo su di un piano orizzontale. Successivamente la procedura è applicata ad un gruppo di prove in canaletta condotte con diverse miscele di argilla e sabbia. Infine, viene analizzata la colata detritica avvenuta nel 2010 lungo il torrente Rotolon, situato in nella parte nord-occidentale del Veneto. È importante sottolineare che tutti i test di laboratorio sono stati eseguiti appositamente per la successiva applicazione della back-analysis, prestando quindi particolare attenzione alle modalità di acquisizione dei dati. Per tutti e tre i casi, è stata ricercata ed applicata una strategia di calibrazione per ridurre l’incertezza nell’identificazione dei parametri ottimali.

Calibration strategies of a depth-integrated numerical model for the propagation of flow-like landslides

BREZZI, LORENZO
2016

Abstract

Oggigiorno, i modelli numerici ricoprono un ruolo di fondamentale importanza per lo studio di fenomeni fisici e naturali. Essi diventano via via sempre più complessi grazie all’aumento del numero di equazioni differenziali implementate in ciascun modello al fine di tener conto dei differenti aspetti che caratterizzano il fenomeno oggetto studio. Conseguentemente cresce anche il numero dei parametri da valutare per adattare i risultati ottenuti dal modello numerico alle misure reali. Tra tutti i fenomeni naturali che si possono considerare, i frane sono indiscutibilmente molto importanti. Tra i diversi tipi di frane, le colate sono una tipologia che si presenta sempre con maggior frequenza a causa dei cambiamenti climatici in atto e con effetti molto dannosi. Quando, poi, la velocità raggiunta in questi fenomeni diventa elevata, aumenta il loro potere distruttivo. I rischi e i danni che ne possono nascere non sono trascurabili, in modo particolare quando le colate avviene in prossimità di aree residenziali. Gli effetti catastrofici che ne possono scaturire spaziano dalla distruzione di edifici e infrastrutture, fino ad arrivare alla ancor più tragica perdita di vite umane. Quando si studia un movimento di colata, tre processi devono essere presi in considerazione: il meccanismo di innesco, la fase di propagazione ed infine il deposito. Questa tesi riguarda principalmente lo studio degli ultimi due processi che si verificano, cioè, quando il materiale ha già iniziato il suo movimento. Le fasi di propagazione e di arresto sono qui analizzate utilizzando un modello numerico sviluppato integrando le equazioni di Saint Venant per il flusso di un materiale monofase omogeneo in acque basse. Il modello è stato applicato sia per la simulazione di esperimenti di laboratorio sia per riprodurre un debris flow avvenuto nel nord Italia nel 2010. Quando si utilizza un modello numerico, la fase di calibrazione rappresenta un’operazione essenziale affinché si possano ottenere buoni risultati. I parametri utilizzati dal codice devono essere attentamente definiti in modo che il modello possa riprodurre il fenomeno fisico con elevata accuratezza. Quando i parametri hanno un significato fisico, risulta necessario controllare se il loro utilizzo, considerando le approssimazioni che il modello inevitabilmente comporta, permette di produrre risultati affidabili. A volte, tuttavia, i parametri che devono essere inseriti nel modello prescindono dalla natura fisica del caso in esame, ed hanno solamente un significato in termini matematici. Quando questo avviene, risulta ancor più importante calibrare il modello, cercando di cogliere l’intera complessità del fenomeno. Se la strategia di calibrazione non tiene conto dei vari aspetti che caratterizzano il caso di studio, infatti, i parametri ottenuti tramite back-analysis potrebbe non aver alcun senso. Questa tesi si pone l’obiettivo di sottolineare la complessità che può contraddistinguere il processo di calibrazione. Dopo aver deciso quale modello numerico utilizzare ed averne comprese possibilità e limitazioni, lo studio di casi di studio differenti permette di evidenziare le criticità e le problematiche che la back-analysis può presentare. A tale scopo, in questo lavoro vengono considerati principalmente tre casi di studio. Il primo riguarda il collasso di una colonna di materiale coesivo su di un piano orizzontale. Successivamente la procedura è applicata ad un gruppo di prove in canaletta condotte con diverse miscele di argilla e sabbia. Infine, viene analizzata la colata detritica avvenuta nel 2010 lungo il torrente Rotolon, situato in nella parte nord-occidentale del Veneto. È importante sottolineare che tutti i test di laboratorio sono stati eseguiti appositamente per la successiva applicazione della back-analysis, prestando quindi particolare attenzione alle modalità di acquisizione dei dati. Per tutti e tre i casi, è stata ricercata ed applicata una strategia di calibrazione per ridurre l’incertezza nell’identificazione dei parametri ottimali.
29-lug-2016
Inglese
SPH / SPH, debris flow / colate di detriti, calibration / calibrazione, numerical model / modello numerico, laboratory test / test sperimentali di laboratorio, material collapse /collasso di materiale, propagation / propagazione, deposit / deposito, Voellmy / Voellmy, Bingham / Bingham, flow-like landslides / colate rapide
COLA, SIMONETTA
Università degli studi di Padova
278
File in questo prodotto:
File Dimensione Formato  
LB_PhD_thesis_last.pdf

accesso aperto

Dimensione 21.63 MB
Formato Adobe PDF
21.63 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/81363
Il codice NBN di questa tesi è URN:NBN:IT:UNIPD-81363