Nucleic acids are organic macromolecules that result from the polymerization of nucleotides. These molecules are generally considered as the support of the genetic information. Two families of nucleic acids are currently known: DNA and RNA. From a structural point of view, the most popular form is the double helix of DNA. However, other forms exist and among them are the G-quadruplex. This is a folding of the DNA, or RNA, in an area rich in guanines. These form quadruplex of guanines, which are stacked on top of each other and are stabilized by a central cation. G-quadruplex structures are increasingly studied. This is not surprising since their biological role involves the regulation of genetic mechanisms. They are notably involved in the regulation of the cell cycle, but they also play a role in cancer, certain neurological or viral diseases. The aim of this PhD thesis is to study G-quadruplex using theoretical chemistry tools. The three years of work raise very important points for the research on G-quadruplex. First, the modeling of a theoretical G-quadruplex structure can be achieved by sequence homology and validated by calculations of a theoretical circular dichroism spectrum. Consequently, it is possible to use these tools to propose and use a G-quadruplex structure if it is not yet experimentally solved. Then, the work done shows that G-quadruplex form a very stable folding since they are globally conserved even when 8-oxo-guanine or strand breaks lesions are introduced at the quartets. Then, the paper focuses on the interaction between G-quadruplex and proteins. It highlights the important role of G-quadruplex RNA in the infection of the viral pathogen SARS-CoV-2. This RNA promotes the dimerization of the SUD protein of the virus, which in turn is responsible for the disruption of the immune system. Finally, this thesis provides a structural explanation for the specific interaction between the DARPin 2E4 protein and the G-quadruplex of the c-Myc promoter.

Modeling the influence of DNA lesion on the regulation of gene expression

MICLOT, Tom
2022

Abstract

Nucleic acids are organic macromolecules that result from the polymerization of nucleotides. These molecules are generally considered as the support of the genetic information. Two families of nucleic acids are currently known: DNA and RNA. From a structural point of view, the most popular form is the double helix of DNA. However, other forms exist and among them are the G-quadruplex. This is a folding of the DNA, or RNA, in an area rich in guanines. These form quadruplex of guanines, which are stacked on top of each other and are stabilized by a central cation. G-quadruplex structures are increasingly studied. This is not surprising since their biological role involves the regulation of genetic mechanisms. They are notably involved in the regulation of the cell cycle, but they also play a role in cancer, certain neurological or viral diseases. The aim of this PhD thesis is to study G-quadruplex using theoretical chemistry tools. The three years of work raise very important points for the research on G-quadruplex. First, the modeling of a theoretical G-quadruplex structure can be achieved by sequence homology and validated by calculations of a theoretical circular dichroism spectrum. Consequently, it is possible to use these tools to propose and use a G-quadruplex structure if it is not yet experimentally solved. Then, the work done shows that G-quadruplex form a very stable folding since they are globally conserved even when 8-oxo-guanine or strand breaks lesions are introduced at the quartets. Then, the paper focuses on the interaction between G-quadruplex and proteins. It highlights the important role of G-quadruplex RNA in the infection of the viral pathogen SARS-CoV-2. This RNA promotes the dimerization of the SUD protein of the virus, which in turn is responsible for the disruption of the immune system. Finally, this thesis provides a structural explanation for the specific interaction between the DARPin 2E4 protein and the G-quadruplex of the c-Myc promoter.
12-dic-2022
Inglese
BARONE, Giampaolo
PITARRESI, Giovanna
Università degli Studi di Palermo
Palermo
File in questo prodotto:
File Dimensione Formato  
PhD_Thesis_Tom_Miclot.pdf

accesso aperto

Dimensione 28.89 MB
Formato Adobe PDF
28.89 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/81435
Il codice NBN di questa tesi è URN:NBN:IT:UNIPA-81435