La transizione energetica sta cambiando il modo in cui usiamo, convertiamo e immagazziniamo l’energia per tutti i nostri scopi. Si tratta di un processo spinto dal crescente riconoscimento delle rilevanti conseguenze che l’attuale uso intensivo di fonti energetiche fossili comporta, e non è ancora chiaro esattamente a che situazione porterà. Sono molte le tecnologie che di volta in volta si trovano proposte come la soluzione principe per il futuro dell’energia. Tra di esse, le celle a combustibile a ossido solido (SOFC) meritano particolare attenzione. Sono dispositivi ad alta temperatura, in grado di convertire diverse tipologie di combustibili (idrogeno, metanolo, idrocarburi…) in energia elettrica, con efficienze che possono raggiungere il 90% se accoppiate con sistemi di recupero del calore. Queste celle a combustibile si possono operare anche reversibilmente come elettrolizzatori allo stato solido. Possono perciò immagazzinare energia elettrica come combustibile in modo da assorbire le fluttuazioni a cui è sottoposta la produzione di elettricità da fonti rinnovabili, fino al momento in cui c’è bisogno. Per via della alta temperatura operativa, non richiedono metalli nobili. La tecnologia delle SOFC non è ancora matura per una diffusione in larga scala, ma la ricerca in questo senso è intensa. Uno dei difetti principali di questi dispositivi è la ristretta vita operativa paragonata agli alti costi, a causa della degradazione prematura di alcuni componenti. Questo lavoro di tesi è un tentativo verso il miglioramento della sostenibilità economica delle SOFC, attraverso la ricerca di materiali più stabili e che permettano soluzioni più economiche. Particolare attenzione è stata riservata allo sviluppo di materiali adatti a operare in celle reversibili e a camera singola (SC-SOFC), due varianti innovative della SOFC di base. È stato proposto l’utilizzo di un approccio mirato per la progettazione dei nuovi materiali, consistente nell’accoppiamento di una fase conduttrice mista ionica ed elettronica (MIEC) che funge da substrato per una fase attiva, specificamente scelta per ottenere le proprietà ricercate per la rispettiva applicazione. La perovskite LSGF (La0.6Sr0.4Ga0.3Fe0.7O3) è stata sintetizzata e completamente caratterizzata come substrato a conduttività mista. Successivamente, è stata impregnata con ossidi di manganese e ferro, in virtù anche della loro economicità, e i due differenti nanocompositi così ottenuti sono stati studiati in dettaglio. La loro attività come elettrodi per celle a combustibile è stata testata, e si sono registrate prestazioni interessanti del nanocomposito con ferro come catodo e del nanocomposito con manganese come anodo. Una cella a combustibile basata su elettrolita LSGM e con elettrodi compositi a base LSGF è stata preparata e testata con successo. L’altissima omogeneità strutturale di questa cella, che sfrutta materiali molto simili sia come elettrolita che come elettrodi, sarebbe in grado di prevenire la formazione di qualsiasi fase isolante. Gli anodi privi di nichel evitano ogni problema legato all’accrescimento delle particelle di metallo, assicurando al dispositivo una migliore durabilità. LSGF è stato testato come materiale elettrodico per celle simmetriche reversibili, ottenendo risultati promettenti. Un materiale catodico interamente selettivo è stato sviluppato a partire dalla brownmillerite Ca2FeAl0.95Mg0.05O5, impregnata a sua volta con ossido di ferro. Con questo materiale si sono ottenute prestazioni discrete, nonostante l’economicità evidente degli elementi utilizzati. I risultati preliminari indicano che tali materiali potrebbero essere utilizzati per celle a camera singola evitando le ampie perdite di combustibile, inevitabili con l’uso dei catodi dell’attuale stato dell’arte.

Advanced materials for Solid Oxide Fuel Cells innovation: reversible and single chamber Solid Oxide Fuel Cells, frontiers in sustainable energy

BEDON, ANDREA
2018

Abstract

La transizione energetica sta cambiando il modo in cui usiamo, convertiamo e immagazziniamo l’energia per tutti i nostri scopi. Si tratta di un processo spinto dal crescente riconoscimento delle rilevanti conseguenze che l’attuale uso intensivo di fonti energetiche fossili comporta, e non è ancora chiaro esattamente a che situazione porterà. Sono molte le tecnologie che di volta in volta si trovano proposte come la soluzione principe per il futuro dell’energia. Tra di esse, le celle a combustibile a ossido solido (SOFC) meritano particolare attenzione. Sono dispositivi ad alta temperatura, in grado di convertire diverse tipologie di combustibili (idrogeno, metanolo, idrocarburi…) in energia elettrica, con efficienze che possono raggiungere il 90% se accoppiate con sistemi di recupero del calore. Queste celle a combustibile si possono operare anche reversibilmente come elettrolizzatori allo stato solido. Possono perciò immagazzinare energia elettrica come combustibile in modo da assorbire le fluttuazioni a cui è sottoposta la produzione di elettricità da fonti rinnovabili, fino al momento in cui c’è bisogno. Per via della alta temperatura operativa, non richiedono metalli nobili. La tecnologia delle SOFC non è ancora matura per una diffusione in larga scala, ma la ricerca in questo senso è intensa. Uno dei difetti principali di questi dispositivi è la ristretta vita operativa paragonata agli alti costi, a causa della degradazione prematura di alcuni componenti. Questo lavoro di tesi è un tentativo verso il miglioramento della sostenibilità economica delle SOFC, attraverso la ricerca di materiali più stabili e che permettano soluzioni più economiche. Particolare attenzione è stata riservata allo sviluppo di materiali adatti a operare in celle reversibili e a camera singola (SC-SOFC), due varianti innovative della SOFC di base. È stato proposto l’utilizzo di un approccio mirato per la progettazione dei nuovi materiali, consistente nell’accoppiamento di una fase conduttrice mista ionica ed elettronica (MIEC) che funge da substrato per una fase attiva, specificamente scelta per ottenere le proprietà ricercate per la rispettiva applicazione. La perovskite LSGF (La0.6Sr0.4Ga0.3Fe0.7O3) è stata sintetizzata e completamente caratterizzata come substrato a conduttività mista. Successivamente, è stata impregnata con ossidi di manganese e ferro, in virtù anche della loro economicità, e i due differenti nanocompositi così ottenuti sono stati studiati in dettaglio. La loro attività come elettrodi per celle a combustibile è stata testata, e si sono registrate prestazioni interessanti del nanocomposito con ferro come catodo e del nanocomposito con manganese come anodo. Una cella a combustibile basata su elettrolita LSGM e con elettrodi compositi a base LSGF è stata preparata e testata con successo. L’altissima omogeneità strutturale di questa cella, che sfrutta materiali molto simili sia come elettrolita che come elettrodi, sarebbe in grado di prevenire la formazione di qualsiasi fase isolante. Gli anodi privi di nichel evitano ogni problema legato all’accrescimento delle particelle di metallo, assicurando al dispositivo una migliore durabilità. LSGF è stato testato come materiale elettrodico per celle simmetriche reversibili, ottenendo risultati promettenti. Un materiale catodico interamente selettivo è stato sviluppato a partire dalla brownmillerite Ca2FeAl0.95Mg0.05O5, impregnata a sua volta con ossido di ferro. Con questo materiale si sono ottenute prestazioni discrete, nonostante l’economicità evidente degli elementi utilizzati. I risultati preliminari indicano che tali materiali potrebbero essere utilizzati per celle a camera singola evitando le ampie perdite di combustibile, inevitabili con l’uso dei catodi dell’attuale stato dell’arte.
7-gen-2018
Inglese
SOFC, energia, perovskiti, brownmilleriti, nanocompositi, celle reversibili, celle a camera singola
GLISENTI, ANTONELLA
MATTEI, GIOVANNI
Università degli studi di Padova
File in questo prodotto:
File Dimensione Formato  
Thesis.pdf

accesso aperto

Dimensione 11.04 MB
Formato Adobe PDF
11.04 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/81551
Il codice NBN di questa tesi è URN:NBN:IT:UNIPD-81551