Le DNA topoisomerasi sono enzimi essenziali in tutti i processi biologici in cui è necessario un riarrangiamento topologico della doppia elica. La DNA topoisomerasi IB umana (hTop1p) è una proteina monomerica di 91KDa, caratterizzata da 4 domini: uno N-terminale; uno “core” costituito a sua volta da 3 subdomini; un C-terminale contenente il residuo catalitico in posizione Tyr723 e una regione linker costituita da 2 α-eliche sporgenti e che connette il dominio core con il C-terminale. Il meccanismo di rilassamento del DNA è un processo multiplo attraverso il quale un filamento di DNA con un’estremità libera al 5’-OH è in grado di ruotare intorno a quello rimasto intatto. L’enzima lega la doppia elica dapprima assumendo una conformazione aperta, e successivamente si richiude attorno al substrato, in questo modo l’energia necessaria per la reazione di topoisomerizzazione è fornita dallo srotolamento della superelica e il rilascio di energia torsionale. hTop1p è anche target specifico di un farmaco antitumorale noto come camptotecina (CPT). Il legame reversibile tra CPT e il complesso DNA-enzima è dipendente dalla fase S del ciclo cellulare e porta ad apoptosi in seguito all’inibizione della fase di riligazione e alla formazione di frammenti a doppio filamento (noti come DSBs double strand breaks). Il meccanismo che spiega come questo enzima sia in grado di rilassare sia superavvolgimenti positivi che negativi è definito “meccanismo di controllo della rotazione” e vi sono diversi dati a suo supporto. La struttura cristallografica della hTop1p in complesso con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart e i suoi collaboratori ha evidenziato che non vi è spazio sufficiente per una rotazione libera all’interno della “tasca enzimatica”. Inoltre mediante un mutante della hTop1p con 2 residui terminali delle regioni delle “lips” sostituiti da 2 cisteine in modo da ottenere un ponte disolfuro, è stato possibile bloccare l’enzima nella conformazione chiusa e dimostrare comunque l’attività di rilassamento da parte della proteina [21] [135]. Vi sono inoltre esperimenti di “single-molecule” che evidenziano come il numero di superavvolgimenti rimossi per ciclo di taglio e riligazione sia direttamente proporzionale al numero di avvolgimenti del DNA substrato e che durante la topoisomerizzazione si registrano attriti e forze rotatorie derivanti dal meccanismo di rotazione del DNA durante il suo rilassamento. Lo scopo di questo progetto di ricerca verte sull’indagine di residui chiave localizzati nella regione hinge (residui 429-436) e coinvolti in tale meccanismo. Negli esperimenti è stato utilizzato l’organismo modello Saccharomyces cerevisiae, nel quale sono state introdotte le seguenti mutazioni: Pro431Gly; Arg434Ala; Arg434Cys; Trp205Cys. Tali sostituzioni risultano di grande interesse per quanto concerne la struttura tridimensionale: il residuo 431 caratterizzato da una prolina si è ipotizzato essere coinvolto in movimenti flessori e di stretching dell’hinge attraverso cui l’enzima medierebbe l’apertura/chiusura e l’interazione con i residui aromatici situati nel suo intorno. Sari e Andricioaei nel 2005 attraverso studi di dinamica molecolare evidenziarono il contributo della regione delle lips nel rilassamento dei superavvolgimenti positivi, mentre riportarono uno stretching dell’hinge per quelli negativi. Dapprima sono stati utilizzati ceppi di lievito deleti della topoisomerasi I endogena per trasfettare i plasmidi con all’interno la sequenza di espressione per la hTop1p mutata ed è stata analizzata la capacità di formare colonie nonché la loro vitalità in presenza di camptotecina a diverse concentrazioni. La sensibilità al farmaco è stata inoltre analizzata mediante saggio di equilibrio taglio-riligazione e valutando la formazione dei complessi di taglio per ciascun mutante in presenza e assenza di camptotecina. I risultati si sono rivelati congruenti con quanto già riportato nel 2007 dal laboratorio di Knudsen, secondo cui il residuo Trp205 e l’intorno aromatico regolano il meccanismo di rotazione durante il rilassamento di superavvolgimenti negativi e riportando una maggior sensibilità al farmaco durante la rimozione di substrati positivi piuttosto che del segno opposto. Il mutante htop1W205Cp nei miei esperimenti ha mostrato un fenotipo parzialmente resistente mentre per i mutanti top1R434A e top1R434C si è riportata una maggior sensibilità e capacità di formare colonie a dosi inferiori a 0.5ug/ml. Per ciascuna proteina è stata misurata la sua attività catalitica nel rilassare superavvolgimenti positivi e negativi, in condizioni di processività e distributività a forza ionica bassa (50 mM), a 150 mM (condizione ottimale) e a forza ionica elevata (500 mM e 1000 mM). In questo modo è stato possibile valutare l’affinità di legame di ciascun mutante per il DNA ed evidenziare aspetti biochimici funzionali legati alla mutazione specifica. Per quanto riguarda il mutante top1R434A è stata riportata attività catalitica ad alte concentrazioni saline, fino a 1000 mM KCl, ed è stata misurata una velocità maggiore nel rilassare substrati positivi piuttosto che negativi, e in ogni caso più performanti sia rispetto l’enzima wild type che gli altri mutanti. La sostituzione dell’arginina (R434) con un’alanina ha migliorato l’affinità di legame per il DNA dell’enzima e questo è stato ancor più evidenziato da saggi di rilassamento in cui top1R434A mostrava capacità di rilassamento, a basse e alte forze ioniche, di due DNA topologicamente diversi, ma contemporaneamente presenti nella miscela di reazione. L’enzima è perciò in grado di staccarsi e riassociarsi ad una nuova molecola di DNA. Inoltre tramite analisi di modelling molecolare è stato possibile indagare il contributo reale dei diversi domini della proteina wild type a confronto con quella mutata nel residuo R434, durante il processo di topoisomerizzazione.

Structural and functional studies on human DNA Topoisomerase IB: interation with supercoiled DNA and the antitumor drug Camptothecin

RODIO, STEFANIA
2012

Abstract

Le DNA topoisomerasi sono enzimi essenziali in tutti i processi biologici in cui è necessario un riarrangiamento topologico della doppia elica. La DNA topoisomerasi IB umana (hTop1p) è una proteina monomerica di 91KDa, caratterizzata da 4 domini: uno N-terminale; uno “core” costituito a sua volta da 3 subdomini; un C-terminale contenente il residuo catalitico in posizione Tyr723 e una regione linker costituita da 2 α-eliche sporgenti e che connette il dominio core con il C-terminale. Il meccanismo di rilassamento del DNA è un processo multiplo attraverso il quale un filamento di DNA con un’estremità libera al 5’-OH è in grado di ruotare intorno a quello rimasto intatto. L’enzima lega la doppia elica dapprima assumendo una conformazione aperta, e successivamente si richiude attorno al substrato, in questo modo l’energia necessaria per la reazione di topoisomerizzazione è fornita dallo srotolamento della superelica e il rilascio di energia torsionale. hTop1p è anche target specifico di un farmaco antitumorale noto come camptotecina (CPT). Il legame reversibile tra CPT e il complesso DNA-enzima è dipendente dalla fase S del ciclo cellulare e porta ad apoptosi in seguito all’inibizione della fase di riligazione e alla formazione di frammenti a doppio filamento (noti come DSBs double strand breaks). Il meccanismo che spiega come questo enzima sia in grado di rilassare sia superavvolgimenti positivi che negativi è definito “meccanismo di controllo della rotazione” e vi sono diversi dati a suo supporto. La struttura cristallografica della hTop1p in complesso con un frammento di DNA di 22pb, ottenuta nel 1998 da Stewart e i suoi collaboratori ha evidenziato che non vi è spazio sufficiente per una rotazione libera all’interno della “tasca enzimatica”. Inoltre mediante un mutante della hTop1p con 2 residui terminali delle regioni delle “lips” sostituiti da 2 cisteine in modo da ottenere un ponte disolfuro, è stato possibile bloccare l’enzima nella conformazione chiusa e dimostrare comunque l’attività di rilassamento da parte della proteina [21] [135]. Vi sono inoltre esperimenti di “single-molecule” che evidenziano come il numero di superavvolgimenti rimossi per ciclo di taglio e riligazione sia direttamente proporzionale al numero di avvolgimenti del DNA substrato e che durante la topoisomerizzazione si registrano attriti e forze rotatorie derivanti dal meccanismo di rotazione del DNA durante il suo rilassamento. Lo scopo di questo progetto di ricerca verte sull’indagine di residui chiave localizzati nella regione hinge (residui 429-436) e coinvolti in tale meccanismo. Negli esperimenti è stato utilizzato l’organismo modello Saccharomyces cerevisiae, nel quale sono state introdotte le seguenti mutazioni: Pro431Gly; Arg434Ala; Arg434Cys; Trp205Cys. Tali sostituzioni risultano di grande interesse per quanto concerne la struttura tridimensionale: il residuo 431 caratterizzato da una prolina si è ipotizzato essere coinvolto in movimenti flessori e di stretching dell’hinge attraverso cui l’enzima medierebbe l’apertura/chiusura e l’interazione con i residui aromatici situati nel suo intorno. Sari e Andricioaei nel 2005 attraverso studi di dinamica molecolare evidenziarono il contributo della regione delle lips nel rilassamento dei superavvolgimenti positivi, mentre riportarono uno stretching dell’hinge per quelli negativi. Dapprima sono stati utilizzati ceppi di lievito deleti della topoisomerasi I endogena per trasfettare i plasmidi con all’interno la sequenza di espressione per la hTop1p mutata ed è stata analizzata la capacità di formare colonie nonché la loro vitalità in presenza di camptotecina a diverse concentrazioni. La sensibilità al farmaco è stata inoltre analizzata mediante saggio di equilibrio taglio-riligazione e valutando la formazione dei complessi di taglio per ciascun mutante in presenza e assenza di camptotecina. I risultati si sono rivelati congruenti con quanto già riportato nel 2007 dal laboratorio di Knudsen, secondo cui il residuo Trp205 e l’intorno aromatico regolano il meccanismo di rotazione durante il rilassamento di superavvolgimenti negativi e riportando una maggior sensibilità al farmaco durante la rimozione di substrati positivi piuttosto che del segno opposto. Il mutante htop1W205Cp nei miei esperimenti ha mostrato un fenotipo parzialmente resistente mentre per i mutanti top1R434A e top1R434C si è riportata una maggior sensibilità e capacità di formare colonie a dosi inferiori a 0.5ug/ml. Per ciascuna proteina è stata misurata la sua attività catalitica nel rilassare superavvolgimenti positivi e negativi, in condizioni di processività e distributività a forza ionica bassa (50 mM), a 150 mM (condizione ottimale) e a forza ionica elevata (500 mM e 1000 mM). In questo modo è stato possibile valutare l’affinità di legame di ciascun mutante per il DNA ed evidenziare aspetti biochimici funzionali legati alla mutazione specifica. Per quanto riguarda il mutante top1R434A è stata riportata attività catalitica ad alte concentrazioni saline, fino a 1000 mM KCl, ed è stata misurata una velocità maggiore nel rilassare substrati positivi piuttosto che negativi, e in ogni caso più performanti sia rispetto l’enzima wild type che gli altri mutanti. La sostituzione dell’arginina (R434) con un’alanina ha migliorato l’affinità di legame per il DNA dell’enzima e questo è stato ancor più evidenziato da saggi di rilassamento in cui top1R434A mostrava capacità di rilassamento, a basse e alte forze ioniche, di due DNA topologicamente diversi, ma contemporaneamente presenti nella miscela di reazione. L’enzima è perciò in grado di staccarsi e riassociarsi ad una nuova molecola di DNA. Inoltre tramite analisi di modelling molecolare è stato possibile indagare il contributo reale dei diversi domini della proteina wild type a confronto con quella mutata nel residuo R434, durante il processo di topoisomerizzazione.
12-gen-2012
Inglese
topoisomerases, topoisomeraseIB, DNA, camptothecin/ topoisomerasi, topoisomerasi IB, DNA, camptotecina
BENEDETTI, PIETRO
VALLE, GIORGIO
Università degli studi di Padova
File in questo prodotto:
File Dimensione Formato  
StefaniaRodioPhDBiotecnologie.pdf

accesso aperto

Dimensione 7.85 MB
Formato Adobe PDF
7.85 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/81604
Il codice NBN di questa tesi è URN:NBN:IT:UNIPD-81604