Questa tesi riporta i principali risultati ottenuti dal candidato durante la sua attività di ricerca. Il lavoro si è focalizzato sullo studio dei meccanismi fisici responsabili del degrado di diodi ad emissione di luce ultravioletta (UV-LED) e di diodi laser basati su InGaN (LDs), in particolare, si è cercato di capire il ruolo dei difetti nel degrado del dispositivo mediante tecniche avanzate come Deep Level Transient Spectroscopy (DLTS) e la spettroscopia di fotocorrente (PC). La prima parte della tesi sarà dedicata al lavoro svolto sui LED UV, in particolare su quattro gruppi di LED UV-A, ciascuno con una diversa lunghezza d'onda di emissione, e un altro gruppo di LED UV-B in (In)AlGaN. Da questo studio è stato possibile dimostrare che i LED UV sottoposti a stress a corrente costante mostrano un degrado graduale e tale degrado ha una forte dipendenza dalla lunghezza d'onda di emissione. Questo processo è dovuto alla generazione di difetti puntiformi all'interno della regione attiva del dispositivo, che causa un aumento della ricombinazione non-radiativa. Anche il livello di corrente e la temperatura di stress hanno un certo impatto sulla degradazione. Per quanto riguarda i LED UV-B, l'analisi del degrado della potenza ottica ha evidenziato che questo degrado è correlato ad un aumento della ricombinazione Shockley-Read-Hall (SRH). Le misure di analisi di DLTS e della fotocorrente hanno permesso di identificare una banda di difetti centrata intorno a 2,5 eV sotto la banda di conduzione, circa a metà band-gap, che può spiegare l'aumento della ricombinazione SRH. Inoltre, le misure di DLTS hanno permesso di identificare la presenza di trappole di tipo accettore relative al magnesio. Questi LED UV-B presentano tre bande parassite attribuite a diversi processi. Questa sezione si conclude con lo studio dei meccanismi di degrado coinvolti quando i dispositivi sono sottoposti a un livello di corrente di stress superiore al valore nominale. Si è dimostrata l'esistenza di due meccanismi di degrado, che presentano un impatto significativo sull'ampiezza relativa del picco principale, correlato all'emissione dalle buche quantiche, e del picco parassita a ~ 340 nm, correlato all’overflow di elettroni verso l'ultima barriera quantica. La seconda parte della tesi sarà incentrata sul lavoro svolto su un gruppo di diodi laser basati su InGaN con una lunghezza d'onda di emissione nominale intorno a 418 nm e un altro gruppo con lunghezza d'onda di emissione tra 422-426 nm. L'analisi effettuata sul primo gruppo di campioni ha lo scopo di studiare la relazione tra il degrado e la presenza di difetti in questi dispositivi quando sottoposti a stress a corrente costante. Si è dimostrato che lo stress induce un aumento della corrente di soglia dei dispositivi, invece, dalle misure di capacità-temperatura, è stato possibile identificare due difetti principali, la cui origine fisica, studiata per mezzo del DLTS, potrebbe essere correlata a difetti di tipo accettatore, associati a dislocazioni. Per concludere lo studio, si presenteranno i risultati ottenuti dall'analisi effettuata su tre gruppi di LED basati su InGaN con diversa densità di dislocazione, al fine di avere una migliore comprensione dell'impatto delle dislocazioni sul degrado e la generazione di difetti. L'analisi DLTS, effettuata prima e dopo lo stress, ha permesso di identificare la presenza di una trappola per lacune in ogni campione, la cui concentrazione aumenta con la densità di dislocazioni, insieme ad una trappola per elettroni generata dopo lo stress, probabilmente sempre correlata alla densità di dislocazioni. Inoltre, i dispositivi sottoposti a stress a corrente costante hanno mostrato una significativa riduzione della loro potenza ottica, non correlata esclusivamente alla densità di dislocazioni.

Study of the reliability of GaN-based optoelectronic devices: UV-LEDs and InGaN-based laser diodes

MONTI, DESIREE
2018

Abstract

Questa tesi riporta i principali risultati ottenuti dal candidato durante la sua attività di ricerca. Il lavoro si è focalizzato sullo studio dei meccanismi fisici responsabili del degrado di diodi ad emissione di luce ultravioletta (UV-LED) e di diodi laser basati su InGaN (LDs), in particolare, si è cercato di capire il ruolo dei difetti nel degrado del dispositivo mediante tecniche avanzate come Deep Level Transient Spectroscopy (DLTS) e la spettroscopia di fotocorrente (PC). La prima parte della tesi sarà dedicata al lavoro svolto sui LED UV, in particolare su quattro gruppi di LED UV-A, ciascuno con una diversa lunghezza d'onda di emissione, e un altro gruppo di LED UV-B in (In)AlGaN. Da questo studio è stato possibile dimostrare che i LED UV sottoposti a stress a corrente costante mostrano un degrado graduale e tale degrado ha una forte dipendenza dalla lunghezza d'onda di emissione. Questo processo è dovuto alla generazione di difetti puntiformi all'interno della regione attiva del dispositivo, che causa un aumento della ricombinazione non-radiativa. Anche il livello di corrente e la temperatura di stress hanno un certo impatto sulla degradazione. Per quanto riguarda i LED UV-B, l'analisi del degrado della potenza ottica ha evidenziato che questo degrado è correlato ad un aumento della ricombinazione Shockley-Read-Hall (SRH). Le misure di analisi di DLTS e della fotocorrente hanno permesso di identificare una banda di difetti centrata intorno a 2,5 eV sotto la banda di conduzione, circa a metà band-gap, che può spiegare l'aumento della ricombinazione SRH. Inoltre, le misure di DLTS hanno permesso di identificare la presenza di trappole di tipo accettore relative al magnesio. Questi LED UV-B presentano tre bande parassite attribuite a diversi processi. Questa sezione si conclude con lo studio dei meccanismi di degrado coinvolti quando i dispositivi sono sottoposti a un livello di corrente di stress superiore al valore nominale. Si è dimostrata l'esistenza di due meccanismi di degrado, che presentano un impatto significativo sull'ampiezza relativa del picco principale, correlato all'emissione dalle buche quantiche, e del picco parassita a ~ 340 nm, correlato all’overflow di elettroni verso l'ultima barriera quantica. La seconda parte della tesi sarà incentrata sul lavoro svolto su un gruppo di diodi laser basati su InGaN con una lunghezza d'onda di emissione nominale intorno a 418 nm e un altro gruppo con lunghezza d'onda di emissione tra 422-426 nm. L'analisi effettuata sul primo gruppo di campioni ha lo scopo di studiare la relazione tra il degrado e la presenza di difetti in questi dispositivi quando sottoposti a stress a corrente costante. Si è dimostrato che lo stress induce un aumento della corrente di soglia dei dispositivi, invece, dalle misure di capacità-temperatura, è stato possibile identificare due difetti principali, la cui origine fisica, studiata per mezzo del DLTS, potrebbe essere correlata a difetti di tipo accettatore, associati a dislocazioni. Per concludere lo studio, si presenteranno i risultati ottenuti dall'analisi effettuata su tre gruppi di LED basati su InGaN con diversa densità di dislocazione, al fine di avere una migliore comprensione dell'impatto delle dislocazioni sul degrado e la generazione di difetti. L'analisi DLTS, effettuata prima e dopo lo stress, ha permesso di identificare la presenza di una trappola per lacune in ogni campione, la cui concentrazione aumenta con la densità di dislocazioni, insieme ad una trappola per elettroni generata dopo lo stress, probabilmente sempre correlata alla densità di dislocazioni. Inoltre, i dispositivi sottoposti a stress a corrente costante hanno mostrato una significativa riduzione della loro potenza ottica, non correlata esclusivamente alla densità di dislocazioni.
20-set-2018
Inglese
GaN, UV-LEDs, InGaN-based laser diodes
MENEGHINI, MATTEO
NEVIANI, ANDREA
Università degli studi di Padova
File in questo prodotto:
File Dimensione Formato  
mont_desiree_tesi.pdf

accesso aperto

Dimensione 4.73 MB
Formato Adobe PDF
4.73 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/81679
Il codice NBN di questa tesi è URN:NBN:IT:UNIPD-81679