I veicoli elettrici sono considerati uno dei pilastri tra le soluzioni ecosostenibili per superare il problema dell’inquinamento globale dovuto ai gas serra. Questo lavoro di tesi tratta del miglioramento delle prestazioni complessive di un sistema di propulsione di un veicolo elettrico mediante l’aumento dell’autonomia e della caratteristica coppia-velocità. Il sistema di propulsione di un veicolo elettrico consiste in un sistema di alimentazione e di un sistema di trazione, coordinati da un sistema di monitoraggio e controllo. Lo studio analitico e l’implementazione della soluzione proposta per il sistema di propulsione sono stati svolti con riferimento ad un motore brushless a magneti permanenti con fem trapezoidale (PM BLDC), utilizzato comunemente in veicoli elettrici leggeri come gli scooter e le mini-car. Il sistema di propulsione è costituito dal motore PM BLDC e dall’invertitore di tensione, mentre il sistema di alimentazione è formato da sorgenti energia elettrica come le batterie, le celle a combustibile o i pannelli fotovoltaici. Le sorgenti di energia elettrica disponibili sul mercato consentono di raggiungere elevati valori di corrente ma con bassi valori di tensione. Al fine di ottenere i valori di tensioni richiesti dal bus in continua, esse sono collegate in serie tra loro o sono connesse mediante convertitori innalzatori di tensione. Ciò può avvenire o attraverso un tradizionale convertitore dc/dc innalzatore con in cascata un invertitore di tensione (DBI) o attraverso un invertitore di tipo Z-source (ZSI). La valutazione di convenienza delle due modalità di alimentazione è basata sul fattore di utilizzazione e sulle sollecitazioni in termini di corrente e tensione dei transistor di potenza. Oltre ai fattori menzionati in precedenza, sono stati dimensionati gli elementi passivi in funzione della quota parte di potenza fornita dalla cella a combustibile. In relazione ai parametri definiti, la migliore soluzione risulta essere l’alimentazione con DBI, mentre quella con ZSI appare conveniente quando la maggior parte della potenza assorbita dal carico sia fornita dalle batterie. Al fine di migliorare le prestazioni di coppia, il ripple di coppia dovuto alla non ideale commutazione del convertitore ad onda quadra (SqPC) è stato studiato analiticamente, stabilendo la correlazione tra le correnti durante la fase di commutazione e la coppia del motore. Il comportamento di coppia a basse ed ad alte velocità è stato esaminato in dettaglio utilizzando specifiche grandezze del motore. I risultati analitici sono stati utilizzati per spiegare la caduta della coppia sviluppata dal motore ad alte velocità; essi sono stati verificati sperimentalmente su un azionamento di propulsione disponibile in laboratorio. La non costanza della caratteristica coppia-velocità limita l’uso del motore nei pressi della velocità nominale. Per superare questo limite è stata altresi utilizzata un’alimentazione con corrente sinusoidale (SPC). Essa permette di fornire al motore una coppia costante. E’ stata quindi eseguita un’analisi dettagliata al fine di vedere quale sia il metodo di alimentazione più conveniente tra SqPC e SPC. È stata altresì descritta la strategia d’implementazione dell’alimentazione SPC, e i risultati analitici sono stati verificati sperimentalmente. E’ stato eseguito lo studio degli azionamenti con motori PM BLDC con l’approccio dei fasori spaziali. Mentre questo approccio è abbastanza comune nel caso di azionamenti con motori con forza contro-elettromotrice e correnti di sinusoidali, esso non è trattato in letteratura per gli azionamenti con motori PM BLDC, in quanto la forza contro-elettromotrice è trapezoidale e il profilo delle correnti di fase è un onda quadra. Il comportamento del motore PM BLDC è stato rivisitato sul piano stazionario e la commutazione della corrente tra le fasi è stata descritta con l’ausilio dei vettori delle grandezze di fase. Tutti i risultati ottenuti nel piano a-b-c sono stati verificati nel piano stazionario, mostrando la semplicità e le potenzialità dell’approccio vettoriale. Al fine di estendere l’autonomia del veicolo sono stati utilizzati dei pannelli fotovoltaici. Il Sistema Geografico di Informazioni Fotovoltaico sviluppato dal Joint Research Center Europe è stato utilizzato per stimare il valore d’irraggiamento solare disponibile a Padova. È stata stimata la potenza generata da un pannello fotovoltaico di superficie 0.487 m2, formato da 20 celle multi-cristalline, e in relazione ad essa, è stato progettato il convertitore dc-dc elevatore per interfacciare il pannello fotovoltaico al bus in continua di una mini-car disponibile in laboratorio. Un appropriato controllo è stato implementato in un processore DSP al fine di inseguire il punto di massima potenza. L’intero sistema è stato provato all’esterno del laboratorio, facendo le misure necessarie per le verifiche. Un modello analitico delle perdite del convertitore dc-dc elevatore è stato sviluppato per descrivere la variazione di guadagno, rendimento e perdite del convertitore al variare dell’irraggiamento solare. Il lavoro di tesi è stato sviluppato presso il Laboratorio di “Sistemi elettrici per l’automazione e la veicolistica” diretto dal Prof. Giuseppe Buja. Il laboratorio afferisce al Dipartimento di Ingegneria Industriale dell’Università di Padova
Electric Vehicle Propulsion System
KESHRI, RITESH KUMAR
2014
Abstract
I veicoli elettrici sono considerati uno dei pilastri tra le soluzioni ecosostenibili per superare il problema dell’inquinamento globale dovuto ai gas serra. Questo lavoro di tesi tratta del miglioramento delle prestazioni complessive di un sistema di propulsione di un veicolo elettrico mediante l’aumento dell’autonomia e della caratteristica coppia-velocità. Il sistema di propulsione di un veicolo elettrico consiste in un sistema di alimentazione e di un sistema di trazione, coordinati da un sistema di monitoraggio e controllo. Lo studio analitico e l’implementazione della soluzione proposta per il sistema di propulsione sono stati svolti con riferimento ad un motore brushless a magneti permanenti con fem trapezoidale (PM BLDC), utilizzato comunemente in veicoli elettrici leggeri come gli scooter e le mini-car. Il sistema di propulsione è costituito dal motore PM BLDC e dall’invertitore di tensione, mentre il sistema di alimentazione è formato da sorgenti energia elettrica come le batterie, le celle a combustibile o i pannelli fotovoltaici. Le sorgenti di energia elettrica disponibili sul mercato consentono di raggiungere elevati valori di corrente ma con bassi valori di tensione. Al fine di ottenere i valori di tensioni richiesti dal bus in continua, esse sono collegate in serie tra loro o sono connesse mediante convertitori innalzatori di tensione. Ciò può avvenire o attraverso un tradizionale convertitore dc/dc innalzatore con in cascata un invertitore di tensione (DBI) o attraverso un invertitore di tipo Z-source (ZSI). La valutazione di convenienza delle due modalità di alimentazione è basata sul fattore di utilizzazione e sulle sollecitazioni in termini di corrente e tensione dei transistor di potenza. Oltre ai fattori menzionati in precedenza, sono stati dimensionati gli elementi passivi in funzione della quota parte di potenza fornita dalla cella a combustibile. In relazione ai parametri definiti, la migliore soluzione risulta essere l’alimentazione con DBI, mentre quella con ZSI appare conveniente quando la maggior parte della potenza assorbita dal carico sia fornita dalle batterie. Al fine di migliorare le prestazioni di coppia, il ripple di coppia dovuto alla non ideale commutazione del convertitore ad onda quadra (SqPC) è stato studiato analiticamente, stabilendo la correlazione tra le correnti durante la fase di commutazione e la coppia del motore. Il comportamento di coppia a basse ed ad alte velocità è stato esaminato in dettaglio utilizzando specifiche grandezze del motore. I risultati analitici sono stati utilizzati per spiegare la caduta della coppia sviluppata dal motore ad alte velocità; essi sono stati verificati sperimentalmente su un azionamento di propulsione disponibile in laboratorio. La non costanza della caratteristica coppia-velocità limita l’uso del motore nei pressi della velocità nominale. Per superare questo limite è stata altresi utilizzata un’alimentazione con corrente sinusoidale (SPC). Essa permette di fornire al motore una coppia costante. E’ stata quindi eseguita un’analisi dettagliata al fine di vedere quale sia il metodo di alimentazione più conveniente tra SqPC e SPC. È stata altresì descritta la strategia d’implementazione dell’alimentazione SPC, e i risultati analitici sono stati verificati sperimentalmente. E’ stato eseguito lo studio degli azionamenti con motori PM BLDC con l’approccio dei fasori spaziali. Mentre questo approccio è abbastanza comune nel caso di azionamenti con motori con forza contro-elettromotrice e correnti di sinusoidali, esso non è trattato in letteratura per gli azionamenti con motori PM BLDC, in quanto la forza contro-elettromotrice è trapezoidale e il profilo delle correnti di fase è un onda quadra. Il comportamento del motore PM BLDC è stato rivisitato sul piano stazionario e la commutazione della corrente tra le fasi è stata descritta con l’ausilio dei vettori delle grandezze di fase. Tutti i risultati ottenuti nel piano a-b-c sono stati verificati nel piano stazionario, mostrando la semplicità e le potenzialità dell’approccio vettoriale. Al fine di estendere l’autonomia del veicolo sono stati utilizzati dei pannelli fotovoltaici. Il Sistema Geografico di Informazioni Fotovoltaico sviluppato dal Joint Research Center Europe è stato utilizzato per stimare il valore d’irraggiamento solare disponibile a Padova. È stata stimata la potenza generata da un pannello fotovoltaico di superficie 0.487 m2, formato da 20 celle multi-cristalline, e in relazione ad essa, è stato progettato il convertitore dc-dc elevatore per interfacciare il pannello fotovoltaico al bus in continua di una mini-car disponibile in laboratorio. Un appropriato controllo è stato implementato in un processore DSP al fine di inseguire il punto di massima potenza. L’intero sistema è stato provato all’esterno del laboratorio, facendo le misure necessarie per le verifiche. Un modello analitico delle perdite del convertitore dc-dc elevatore è stato sviluppato per descrivere la variazione di guadagno, rendimento e perdite del convertitore al variare dell’irraggiamento solare. Il lavoro di tesi è stato sviluppato presso il Laboratorio di “Sistemi elettrici per l’automazione e la veicolistica” diretto dal Prof. Giuseppe Buja. Il laboratorio afferisce al Dipartimento di Ingegneria Industriale dell’Università di PadovaFile | Dimensione | Formato | |
---|---|---|---|
Keshri_Ritesh_tesi.pdf
accesso aperto
Dimensione
4.89 MB
Formato
Adobe PDF
|
4.89 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/82254
URN:NBN:IT:UNIPD-82254