Motivated by many financial insights, we provide dual representation theorems for quasiconvex conditional maps defined on vector space or modules and taking values in sets of random variables. These results match the standard dual representation for quasiconvex real valued maps provided by Penot and Volle. As a financial byproduct, we apply this theory to the case of dynamic certainty equivalents and conditional risk measures.
ON QUASICONVEX CONDITIONAL MAPS. DUALITY RESULTS AND APPLICATIONS TO FINANCE
MAGGIS, MARCO
2010
Abstract
Motivated by many financial insights, we provide dual representation theorems for quasiconvex conditional maps defined on vector space or modules and taking values in sets of random variables. These results match the standard dual representation for quasiconvex real valued maps provided by Penot and Volle. As a financial byproduct, we apply this theory to the case of dynamic certainty equivalents and conditional risk measures.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
phd.unimi.R07605.pdf
accesso aperto
Dimensione
563.33 kB
Formato
Adobe PDF
|
563.33 kB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/20.500.14242/82552
Il codice NBN di questa tesi è
URN:NBN:IT:UNIMI-82552