Motivated by many financial insights, we provide dual representation theorems for quasiconvex conditional maps defined on vector space or modules and taking values in sets of random variables. These results match the standard dual representation for quasiconvex real valued maps provided by Penot and Volle. As a financial byproduct, we apply this theory to the case of dynamic certainty equivalents and conditional risk measures.

ON QUASICONVEX CONDITIONAL MAPS. DUALITY RESULTS AND APPLICATIONS TO FINANCE

MAGGIS, MARCO
2010

Abstract

Motivated by many financial insights, we provide dual representation theorems for quasiconvex conditional maps defined on vector space or modules and taking values in sets of random variables. These results match the standard dual representation for quasiconvex real valued maps provided by Penot and Volle. As a financial byproduct, we apply this theory to the case of dynamic certainty equivalents and conditional risk measures.
17-dic-2010
Inglese
Quasiconvex Maps ; Lattices ; Vector Spaces ; Modules ; Dual Representation ; Risk Measures ; Conditional Certainty Equivalent
FRITTELLI, MARCO
Università degli Studi di Milano
File in questo prodotto:
File Dimensione Formato  
phd.unimi.R07605.pdf

accesso aperto

Dimensione 563.33 kB
Formato Adobe PDF
563.33 kB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/82552
Il codice NBN di questa tesi è URN:NBN:IT:UNIMI-82552