RIASSUNTO Attualmente il biodiesel è prodotto da piante superiori quali girasole e soia definite oleaginose per la loro capacità di accumulare lipidi nei semi. Tuttavia, il loro impiego per la produzione di oli combustibili presenta numerose limitazioni. Ad esempio, nel caso delle specie di piante maggiormente produttive meno del 5% sulla biomassa totale è rappresentato da lipidi. In alcune specie di microalghe, invece, più del 50% del peso secco è stimato essere in lipidi rendendo tali organismi decisamente competitivi nella possibile produzione di biodiesel. Tuttavia, è necessario ampliare le ricerche nel campo in modo tale da riuscire a sfruttare appieno il potenziale insito nelle alghe per una produzione su larga scala. In questo senso, le specie appartenenti al genere Nannochloropsis riscuotono un grande successo, dovuto principalmente alle caratteristiche fondamentali che caratterizzano questo genere, ovvero una buona velocità di crescita accompagnata da una buona produzione in termini di lipidi. Questo lavoro si propone di analizzare il ruolo svolto dalla fotosintesi nella produttività finale di una microalga marina, Nannochloropsis gaditana. L’efficienza nell’utilizzo della luce è infatti un punto cardine per massimizzare la produttività algale su larga scala. In tutti gli organismi fotosintetici la luce è uno dei fattori che maggiormente ne influenza la crescita dal momento che è essenziale per tutti i processi metabolici. Tuttavia, la radiazione luminosa può in alcuni casi essere fonte di stress. Per esempio, quando la luce incidente sull’organismo è in eccesso può portare alla formazione di forme reattive dell’ossigeno e a stress ossidativi che in qualche modo vanno ad agire sulla produttività delle alghe. Nel secondo capitolo, colture di Nannochloropsis gaditana sono state esposte a diverse intensità luminose e per ciascuna di esse sono stati monitorati il tasso di crescita e la produttività in termini di lipidi. I risultati raccolti hanno dimostrato come Nannochloropsis sia in grado di adattarsi a tutte le intensità luminose testate attivando una risposta acclimativa che ne ha permesso la crescita nelle diverse condizioni. Tuttavia l’intensità luminosa non sembra avere un effetto particolare sulla produzione finale di lipidi. Nel terzo capitolo, colture di Nannochloropsis sono state esposte alle stesse intensità luminose del capitolo precedente ma in presenza di un flusso di aria miscelato con anidride carbonica al 5% in quanto questo ultimo componente rappresenta uno dei maggiori fattori utilizzati nella produzione di biodiesel su larga scala. Le alghe infatti sono in grado di sfruttare in modo molto efficiente la CO2, utilizzandola per incrementare il tasso di crescita. In questo capitolo è stato analizzato l’effetto combinato di luce ed eccesso di CO2 sulla crescita e sulla produttività lipidica di Nannochloropsis. I risultati ottenuti hanno dimostrato come l’eccesso di CO2 stimoli positivamente la crescita algale, aumentando la quantità di biomassa finale e allo stesso modo la sintesi di lipidi, che in eccesso di luce è fortemente incrementata. La limitata disponibilità di nutrienti è uno dei maggiori fattori che influenza la sintesi di lipidi nelle alghe, in particolare la mancanza di azoto. In queste condizioni, Nannochloropsis è in grado di accumulare lipidi fino al 70% rispetto al peso secco. Nel capitolo quattro è stata quindi studiata l’influenza della carenza di azoto in colture di Nannochloropsis. I risultati prodotti hanno stabilito come in carenza di azoto si instauri una riorganizzazione dell’intero apparato fotosintetico confermando il PSII come il maggior target di tale stress producendo, inoltre, come conseguenza una diminuzione del trasporto elettronico lineare dal PSII al PSI e un forte aumento del trasporto ciclico intorno al PSI. Nannochloropsis, dunque, si presenta come candidato ideale per la produzione di biodiesel grazie al veloce tasso di crescita, alla buona produzione lipidica e all’estremo grado di adattamento alle più diverse intensità luminose che normalmente caratterizzano l’ambiente naturale. Tuttavia, l’utilizzo della forte carenza di azoto per la stimolazione dell’accumulo di lipidi non sembra il metodo migliore per la produzione di biodiesel su larga scala in quanto l’efficienza fotosintetica delle alghe ne è fortemente risentita con una riduzione della produttività finale. Ad ogni modo, il fatto che Nannochloropsis sia in grado di modulare il proprio apparato fotosintetico in risposta a cambiamenti ambientali implica la possibilità di trovare un equilibrio tra il grado di stress applicato alle alghe e il mantenimento di una buona efficienza fotosintetica nonché di modificare geneticamente le alghe in modo tale da aumentare la sintesi di lipidi finale. Nel capitolo cinque gli effetti della carenza di azoto sono stati studiati nell’alga verde Chlamydomonas reinhardtii, verificando anche in questo caso come la disponibilità di azoto influenzi soprattutto il PSII e il trasporto ciclico degli elettroni risulti incrementato in carenza di azoto. Comparando le risposte di Nannochloropsis e Chlamydomonas si può quindi proporre la riorganizzazione dell’intero apparato fotosintetico e lo sfruttamento di flussi alternativi di elettroni rispetto al comune lineare, come una tipica risposta adattiva alla mancanza di azoto nelle alghe. Nell’appendice 1 l’influenza delle diverse intensità luminose è stata analizzata applicando alle alghe un’alternanza di cicli luce-buio a diverse frequenze che potessero simulare le condizioni di ombreggiamento dovute al mescolamento presenti in un fotobioreattore. I risultati proposti hanno dimostrato come Nannochloropsis sia in grado di sfruttare al meglio anche le intensità luminose molto elevate purché la frequenza dei cicli luce-buio sia ottimale. In caso contrario le cellule sono sottoposte ad una drastica riduzione nell’efficienza fotosintetica con conseguente calo della produttività. L’ottimizzazione del mescolamento, dunque, è da considerarsi come un parametro fondamentale per poter sfruttare pienamente la capacità di utilizzo della luce da parte delle alghe. Per poter capire nel modo più dettagliato possibile i meccanismi di base che permettono agli organismi fotosintetici di adattarsi alle variazioni di intensità luminosa, una parte di questo lavoro è stata incentrata sullo studio di una proteina coinvolta in un ben noto meccanismo di fotoprotezione, il ciclo delle xantofille. L’enzima preso in considerazione è la Violaxantina De-Epossidasi (VDE) che a pH neutri si trova solubile nel lumen tilacoidale per poi essere in grado di legarsi ai tilacoidi una volta che il pH acidifica, assumendo un cambiamento conformazionale. Nell’appendice 2 è trattata la VDE della pianta superiore Arabidopsis thaliana, organismo scelto per comodità sperimentale, anche se recentemente un gene omologo che codifica per la VDE è stato trovato anche in Nannochloropsis. Il meccanismo pH-dipendente è stato indagato grazie ad analisi in silico che hanno permesso di riconoscere i residui aminoacidici coinvolti nel cambiamento conformazionale della proteina. Tali residui sono stati poi mutati per verificarne l’importanza a livello dell’attività enzimatica e i risultati finali hanno indicato come ciascun singolo residuo sia sufficiente ad indurre i primi steps di attivazione del meccanismo pH-dipendente e come tutti i residui insieme cooperino producendo un effetto cumulativo sull’attività finale dell’enzima.

Biodiesel from microalgae: the link between photosynthesis and productivity in Nannochloropsis gaditana

SIMIONATO, DIANA
2012

Abstract

RIASSUNTO Attualmente il biodiesel è prodotto da piante superiori quali girasole e soia definite oleaginose per la loro capacità di accumulare lipidi nei semi. Tuttavia, il loro impiego per la produzione di oli combustibili presenta numerose limitazioni. Ad esempio, nel caso delle specie di piante maggiormente produttive meno del 5% sulla biomassa totale è rappresentato da lipidi. In alcune specie di microalghe, invece, più del 50% del peso secco è stimato essere in lipidi rendendo tali organismi decisamente competitivi nella possibile produzione di biodiesel. Tuttavia, è necessario ampliare le ricerche nel campo in modo tale da riuscire a sfruttare appieno il potenziale insito nelle alghe per una produzione su larga scala. In questo senso, le specie appartenenti al genere Nannochloropsis riscuotono un grande successo, dovuto principalmente alle caratteristiche fondamentali che caratterizzano questo genere, ovvero una buona velocità di crescita accompagnata da una buona produzione in termini di lipidi. Questo lavoro si propone di analizzare il ruolo svolto dalla fotosintesi nella produttività finale di una microalga marina, Nannochloropsis gaditana. L’efficienza nell’utilizzo della luce è infatti un punto cardine per massimizzare la produttività algale su larga scala. In tutti gli organismi fotosintetici la luce è uno dei fattori che maggiormente ne influenza la crescita dal momento che è essenziale per tutti i processi metabolici. Tuttavia, la radiazione luminosa può in alcuni casi essere fonte di stress. Per esempio, quando la luce incidente sull’organismo è in eccesso può portare alla formazione di forme reattive dell’ossigeno e a stress ossidativi che in qualche modo vanno ad agire sulla produttività delle alghe. Nel secondo capitolo, colture di Nannochloropsis gaditana sono state esposte a diverse intensità luminose e per ciascuna di esse sono stati monitorati il tasso di crescita e la produttività in termini di lipidi. I risultati raccolti hanno dimostrato come Nannochloropsis sia in grado di adattarsi a tutte le intensità luminose testate attivando una risposta acclimativa che ne ha permesso la crescita nelle diverse condizioni. Tuttavia l’intensità luminosa non sembra avere un effetto particolare sulla produzione finale di lipidi. Nel terzo capitolo, colture di Nannochloropsis sono state esposte alle stesse intensità luminose del capitolo precedente ma in presenza di un flusso di aria miscelato con anidride carbonica al 5% in quanto questo ultimo componente rappresenta uno dei maggiori fattori utilizzati nella produzione di biodiesel su larga scala. Le alghe infatti sono in grado di sfruttare in modo molto efficiente la CO2, utilizzandola per incrementare il tasso di crescita. In questo capitolo è stato analizzato l’effetto combinato di luce ed eccesso di CO2 sulla crescita e sulla produttività lipidica di Nannochloropsis. I risultati ottenuti hanno dimostrato come l’eccesso di CO2 stimoli positivamente la crescita algale, aumentando la quantità di biomassa finale e allo stesso modo la sintesi di lipidi, che in eccesso di luce è fortemente incrementata. La limitata disponibilità di nutrienti è uno dei maggiori fattori che influenza la sintesi di lipidi nelle alghe, in particolare la mancanza di azoto. In queste condizioni, Nannochloropsis è in grado di accumulare lipidi fino al 70% rispetto al peso secco. Nel capitolo quattro è stata quindi studiata l’influenza della carenza di azoto in colture di Nannochloropsis. I risultati prodotti hanno stabilito come in carenza di azoto si instauri una riorganizzazione dell’intero apparato fotosintetico confermando il PSII come il maggior target di tale stress producendo, inoltre, come conseguenza una diminuzione del trasporto elettronico lineare dal PSII al PSI e un forte aumento del trasporto ciclico intorno al PSI. Nannochloropsis, dunque, si presenta come candidato ideale per la produzione di biodiesel grazie al veloce tasso di crescita, alla buona produzione lipidica e all’estremo grado di adattamento alle più diverse intensità luminose che normalmente caratterizzano l’ambiente naturale. Tuttavia, l’utilizzo della forte carenza di azoto per la stimolazione dell’accumulo di lipidi non sembra il metodo migliore per la produzione di biodiesel su larga scala in quanto l’efficienza fotosintetica delle alghe ne è fortemente risentita con una riduzione della produttività finale. Ad ogni modo, il fatto che Nannochloropsis sia in grado di modulare il proprio apparato fotosintetico in risposta a cambiamenti ambientali implica la possibilità di trovare un equilibrio tra il grado di stress applicato alle alghe e il mantenimento di una buona efficienza fotosintetica nonché di modificare geneticamente le alghe in modo tale da aumentare la sintesi di lipidi finale. Nel capitolo cinque gli effetti della carenza di azoto sono stati studiati nell’alga verde Chlamydomonas reinhardtii, verificando anche in questo caso come la disponibilità di azoto influenzi soprattutto il PSII e il trasporto ciclico degli elettroni risulti incrementato in carenza di azoto. Comparando le risposte di Nannochloropsis e Chlamydomonas si può quindi proporre la riorganizzazione dell’intero apparato fotosintetico e lo sfruttamento di flussi alternativi di elettroni rispetto al comune lineare, come una tipica risposta adattiva alla mancanza di azoto nelle alghe. Nell’appendice 1 l’influenza delle diverse intensità luminose è stata analizzata applicando alle alghe un’alternanza di cicli luce-buio a diverse frequenze che potessero simulare le condizioni di ombreggiamento dovute al mescolamento presenti in un fotobioreattore. I risultati proposti hanno dimostrato come Nannochloropsis sia in grado di sfruttare al meglio anche le intensità luminose molto elevate purché la frequenza dei cicli luce-buio sia ottimale. In caso contrario le cellule sono sottoposte ad una drastica riduzione nell’efficienza fotosintetica con conseguente calo della produttività. L’ottimizzazione del mescolamento, dunque, è da considerarsi come un parametro fondamentale per poter sfruttare pienamente la capacità di utilizzo della luce da parte delle alghe. Per poter capire nel modo più dettagliato possibile i meccanismi di base che permettono agli organismi fotosintetici di adattarsi alle variazioni di intensità luminosa, una parte di questo lavoro è stata incentrata sullo studio di una proteina coinvolta in un ben noto meccanismo di fotoprotezione, il ciclo delle xantofille. L’enzima preso in considerazione è la Violaxantina De-Epossidasi (VDE) che a pH neutri si trova solubile nel lumen tilacoidale per poi essere in grado di legarsi ai tilacoidi una volta che il pH acidifica, assumendo un cambiamento conformazionale. Nell’appendice 2 è trattata la VDE della pianta superiore Arabidopsis thaliana, organismo scelto per comodità sperimentale, anche se recentemente un gene omologo che codifica per la VDE è stato trovato anche in Nannochloropsis. Il meccanismo pH-dipendente è stato indagato grazie ad analisi in silico che hanno permesso di riconoscere i residui aminoacidici coinvolti nel cambiamento conformazionale della proteina. Tali residui sono stati poi mutati per verificarne l’importanza a livello dell’attività enzimatica e i risultati finali hanno indicato come ciascun singolo residuo sia sufficiente ad indurre i primi steps di attivazione del meccanismo pH-dipendente e come tutti i residui insieme cooperino producendo un effetto cumulativo sull’attività finale dell’enzima.
30-gen-2012
Inglese
nannochloropsis, biodiesel, photosynthesis, light, nitrogen deprivation
MOROSINOTTO, TOMAS
ZANOTTI, GIUSEPPE
Università degli studi di Padova
File in questo prodotto:
File Dimensione Formato  
Tesi_dottorato_XXIV_ciclo_diana_simionato.pdf

accesso aperto

Dimensione 3.29 MB
Formato Adobe PDF
3.29 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/82863
Il codice NBN di questa tesi è URN:NBN:IT:UNIPD-82863