L’emicrania è un disturbo neurologico comune e altamente invalidante, che colpisce più del 10% della popolazione, dovuto ad una disfunzione primaria del cervello che porta all’attivazione e alla sensibilizzazione episodica delle vie nocicettive trigeminovascolari. L’emicrania emiplegica familiare (FHM) è un rara forma di emicrania con aura considerata un buon modello per lo studio dell’emicrania; infatti gli attacchi tipici di FHM sono simili a quelli della normale emicrania con aura, eccetto per il sintomo dell’emiparesi (Pietrobon and Moskowitz, 2013). Mutazioni missenso con guadagno di funzione nel gene CACNA1A, codificante la subunità formante il poro dei canali del Ca2+ voltaggio dipendenti CaV2.1 (denominati anche canali del Ca2+ di tipo P/Q), causano FHM di tipo 1 (FHM1) e mutazioni con perdita di funzione nel gene ATP1A2, codificante la subunità astrocitaria α2 della Na,K-ATPasi, causano FHM di tipo 2 (FHM2) (Ophoff et al., 1996; De Fusco et al., 2003). Topi knock-in (KI) per le mutazioni che causano FHM1 e FHM2 presentano una facilitazione nell’induzione e nella propagazione della cortical spreading depression (CSD) (van den Maagdenberg et al., 2004, 2010; Leo et al., 2011), il fenomeno neurologico alla base dell’aura emicranica e un evento chiave innescante l’attivazione del sistema trigeminovascolare. Topi FHM1 KI per la mutazione R192Q, mostrano un aumentato influsso di Ca2+ attraverso i canali del Ca2+ di tipo P/Q e un aumento nella probabilità di rilascio di glutammato alle sinapsi piramidali della corteccia (Pietrobon, 2010; Tottene et al., 2009), che potrebbe spiegare la facilitazione della CSD sperimentale osservata in questi topi. Recentemente, nel nostro laboratorio, è stato dimostrato che la frequenza degli up-state registrati in fettine acute di corteccia, simili alle oscillazioni lente riportate in vivo (Steriade et al., 1993), è maggiore nel topo FHM1 KI che nel WT. Questo dato suggerisce che il guadagno di funzione dei canali del Ca2+ di tipo P/Q faciliti i meccanismi di generazione degli up-state e/o riduca il periodo refrattario dopo un up-state (Fabbro, Sessolo, Vecchia and Pietrobon, dati non pubblicati). Lo scopo della prima parte del mio lavoro è stato quello di approfondire il ruolo dei canali del Ca2+ di tipo P/Q nell’attività ricorrente di circuito alla base degli up-state nei topi WT. Ho studiato l’effetto dell’inibizione farmacologica dei canali del Ca2+ di tipo P/Q sulla attività ad up-state registrata da neuroni piramidali dello strato 2/3 in fettine acute di corteccia somatosensoriale di topo. Per questo scopo ho eseguito esperimenti di singolo e doppio patch clamp. Ho trovato che il blocco di questi canali del Ca2+ trasforma gli up-state in eventi che ricordano le scariche epilettiformi interictali. Ho analizzato le conduttanze medie eccitatorie ed inibitorie (Ge and Gi) durante gli up-state in controllo, durante gli eventi epilettiformi simil-interictali dopo il blocco dei canali del Ca2+ di tipo P/Q e nel periodo iniziale di applicazione dell’inibitore di questi canali, ovvero quando solo una parte dei canali era stata bloccata. Ho trovato che 1) i canali del Ca2+ di tipo P/Q svolgono un ruolo fondamentale nel controllare sia la trasmissione sinaptica eccitatoria sia quella inibitoria sulle cellule piramidali durante l’attività ricorrente di circuito sottostante gli up-state. Tuttavia, il blocco di questi canali riduce maggiormente l’inibizione ricorrente rispetto all’eccitazione, spostando di conseguenza l’equilibrio eccitazione-inibizione a favore dell’eccitazione. 2) Quando, come risultato del blocco dei canali del Ca2+ di tipo P/Q, il rapporto Ge/Gi supera un valore critico, l’attività spontanea di circuito cambia e gli up-state vengono trasformati in eventi simili alle scariche epilettiformi interictali. Questi dati suggeriscono che, nella corteccia cerebrale, i canali del Ca2+ di tipo P/Q svolgono un ruolo predominante nel controllo della trasmissione sinaptica inibitoria rispetto a quella eccitatoria. Dal momento che in molte sinapsi corticali, i canali del Ca2+ di tipo P/Q e di tipo N (denominati anche CaV2.2) cooperano nel controllare la trasmissione sinaptica, ho studiato anche l’effetto del blocco dei canali del Ca2+ di tipo N sull’attività ad up-state. L’inibizione farmacologica di questi canali causa una riduzione della frequenza degli up-state, suggerendo che i canali del Ca2+ di tipo N sono coinvolti nel regolarne la frequenza. Dopo il blocco dei canali del Ca2+ di tipo N, il rapporto Ge/Gi aumenta ma non sufficientemente a trasformare gli up-state in eventi epilettiformi simil-interictali. L’obiettivo della seconda parte del mio progetto è stato quello di studiare i meccanismi, ancora non noti, alla base della facilitazione della CSD sperimentale nel topo FHM2 KI. Dopo aver determinato le condizioni sperimentali in cui poter osservare la facilitazione della CSD in vitro, ho indagato tre possibili meccanismi che potrebbero spiegare la facilitazione della CSD nel topo eterozigote FHM2 KI, in fettine acute di corteccia somatosensoriale di topo. Dato lo specifico accoppiamento sia funzionale che strutturale negli astrociti tra la α2 Na,K-ATPasi e i trasportatori del glutammato a livello delle sinapsi corticali glutammatergiche (Cholet et al., 2002), ho verificato se la perdita di funzione della α2 Na,K-ATPasi compromettesse la rimozione, mediata dagli astrociti, del glutammato dalla fessura sinaptica durante l’attività neuronale. Ho pertanto valutato il tasso di rimozione del glutammato misurando elettrofisiologicamente la corrente attivata sinapticamente mediata dai trasportatori del glutammato (STC), indotta negli astrociti dello strato 1 attraverso la stimolazione extracellulare delle afferenze neuronali nello stesso strato sia con singoli impulsi che con treni di impulsi ad alta frequenza (50 and 100 Hz). Ho isolato farmacologicamente la STC, al fine di misurarne il tempo di decadimento che fornisce una misura relativa della rimozione del glutammato mediata dagli astrociti (Bergles and Jahr, 1997; Diamond and Jahr, 2000). Ho trovato che la rimozione del glutammato rilasciato è effettivamente più lenta nei topi FHM2 KI rispetto ai topi WT. Il rallentamento della rimozione del glutammato era più pronunciato dopo un treno di impulsi rispetto a dopo un singolo stimolo e aumentava all’aumentare della frequenza del treno. I miei dati dimostrano che la perdita di funzione della α2 Na,K-ATPasi compromette la rimozione del glutammato e suggeriscono che la rimozione del glutammato diventa più inefficiente all’aumentare della frequenza dell’attività corticale. Sorprendentemente, l’ampiezza della STC dopo un singolo stimolo era più grande nel topo FHM2 KI che nel topo WT. Dal momento che l’ampiezza della STC è proporzionale al rilascio di glutammato evocato alle sinapsi dalla stimolazione extracellulare (Bergles and Jahr, 1997; Diamond and Jahr, 2000), questo risultato potrebbe suggerire che la stimolazione extracellulare provoca un rilascio di glutammato maggiore nel topo FHM2 KI che nel topo WT. Infatti, durante stimolazioni ripetute, la STC deprime di più nel topo FHM2 KI che nel topo WT, come previsto nel caso di probabilità di rilascio di glutammato aumentata nel topo FHM2 KI. Considerato il ruolo chiave dei recettori NMDA nel ciclo di feedback positivo che innesca la CSD (Tottene et al., 2011; Pietrobon and Moskowitz, 2014), sia la ridotta rimozione del glutammato sia l’aumentato rilascio del neurotrasmettitore potrebbero essere implicati nella facilitazione osservata nel topo FHM2 KI. Visto che molti modelli della CSD includono un aumento della concentrazione extracellulare di K+ al di sopra di un valore critico, come un evento innescante la CSD (Pietrobon and Moskowitz, 2014), e alla luce delle evidenze farmacologiche che indicano che l’α2 e/o l’α3 Na,K-ATPasi partecipano alla rimozione del K+ dallo spazio extracellulare durante l’attività neuronale intensa (D’Ambrosio et al., 2002; Kofuji and Newman, 2004), ho indagato se la rimozione del K+ mediata dagli astrociti fosse compromessa nel topo FHM2 KI. Ho registrato elettrofisiologicamente la corrente sostenuta indotta negli astrociti dello strato 1 da stimolazione extracellulare; questa corrente è per lo più dovuta all’influsso di K+ attraverso i canali Kir e il suo tempo di decadimento fornisce una misura indiretta della velocità di rimozione del K+ mediata dagli astrociti. Questi esperimenti preliminari evidenziano che il tempo di decadimento della corrente di K+ evocata da treni di impulsi è simile nel topo FHM2 KI e nel topo WT. Se tale risultato venisse confermato, indicherebbe che non ci sono variazioni nel tasso di rimozione del K+ nel topo FHM2 KI rispetto al topo WT. Dal momento che l’α2 Na,K-ATPasi è strettamente accoppiata allo scambiatore Na+/Ca2+ a livello di microdomini di membrana sovrapposti al reticolo endoplasmatico (Lencesova et al., 2004; Golovina et al., 2003), abbiamo valutato se il contenuto di Ca2+ nei depositi intracellulari degli astrociti nel topo FHM2 KI fosse aumentata. Abbiamo ottenuto una misura indiretta della quantità di Ca2+ nei depositi andando a misurare negli astrociti corticali in coltura i transienti di Ca2+ indotti da ionomicina in un mezzo senza Ca2+. Il transiente di Ca2+ nel topo FHM2 KI era maggiore che nel topo WT, indicando un aumentato contenuto di Ca2+ nei depositi degli astrociti del topo FHM2 KI. Misurando la soglia e la velocita della CSD dopo aver svuotato i depositi di Ca2+ usando acido ciclopiazonico (CPA), un inibitore della SERCA, ho osservato che lo svuotamento delle riserve di Ca2+ riduce la facilitazione della CSD nel topo FHM2 KI, senza influenzare la CSD nel topo WT. Questo risultato suggerisce che l’aumentata concentrazione di Ca2+ all’interno dei depositi degli astrociti è coinvolta nella facilitazione della CSD sperimentale nel topo FHM2 KI.

INVESTIGATION OF THE PATHOPHYSIOLOGY OF MIGRAINE USING FAMILIAL HEMIPLEGIC MIGRAINE MOUSE MODELS

CAPUANI, CLIZIA
2015

Abstract

L’emicrania è un disturbo neurologico comune e altamente invalidante, che colpisce più del 10% della popolazione, dovuto ad una disfunzione primaria del cervello che porta all’attivazione e alla sensibilizzazione episodica delle vie nocicettive trigeminovascolari. L’emicrania emiplegica familiare (FHM) è un rara forma di emicrania con aura considerata un buon modello per lo studio dell’emicrania; infatti gli attacchi tipici di FHM sono simili a quelli della normale emicrania con aura, eccetto per il sintomo dell’emiparesi (Pietrobon and Moskowitz, 2013). Mutazioni missenso con guadagno di funzione nel gene CACNA1A, codificante la subunità formante il poro dei canali del Ca2+ voltaggio dipendenti CaV2.1 (denominati anche canali del Ca2+ di tipo P/Q), causano FHM di tipo 1 (FHM1) e mutazioni con perdita di funzione nel gene ATP1A2, codificante la subunità astrocitaria α2 della Na,K-ATPasi, causano FHM di tipo 2 (FHM2) (Ophoff et al., 1996; De Fusco et al., 2003). Topi knock-in (KI) per le mutazioni che causano FHM1 e FHM2 presentano una facilitazione nell’induzione e nella propagazione della cortical spreading depression (CSD) (van den Maagdenberg et al., 2004, 2010; Leo et al., 2011), il fenomeno neurologico alla base dell’aura emicranica e un evento chiave innescante l’attivazione del sistema trigeminovascolare. Topi FHM1 KI per la mutazione R192Q, mostrano un aumentato influsso di Ca2+ attraverso i canali del Ca2+ di tipo P/Q e un aumento nella probabilità di rilascio di glutammato alle sinapsi piramidali della corteccia (Pietrobon, 2010; Tottene et al., 2009), che potrebbe spiegare la facilitazione della CSD sperimentale osservata in questi topi. Recentemente, nel nostro laboratorio, è stato dimostrato che la frequenza degli up-state registrati in fettine acute di corteccia, simili alle oscillazioni lente riportate in vivo (Steriade et al., 1993), è maggiore nel topo FHM1 KI che nel WT. Questo dato suggerisce che il guadagno di funzione dei canali del Ca2+ di tipo P/Q faciliti i meccanismi di generazione degli up-state e/o riduca il periodo refrattario dopo un up-state (Fabbro, Sessolo, Vecchia and Pietrobon, dati non pubblicati). Lo scopo della prima parte del mio lavoro è stato quello di approfondire il ruolo dei canali del Ca2+ di tipo P/Q nell’attività ricorrente di circuito alla base degli up-state nei topi WT. Ho studiato l’effetto dell’inibizione farmacologica dei canali del Ca2+ di tipo P/Q sulla attività ad up-state registrata da neuroni piramidali dello strato 2/3 in fettine acute di corteccia somatosensoriale di topo. Per questo scopo ho eseguito esperimenti di singolo e doppio patch clamp. Ho trovato che il blocco di questi canali del Ca2+ trasforma gli up-state in eventi che ricordano le scariche epilettiformi interictali. Ho analizzato le conduttanze medie eccitatorie ed inibitorie (Ge and Gi) durante gli up-state in controllo, durante gli eventi epilettiformi simil-interictali dopo il blocco dei canali del Ca2+ di tipo P/Q e nel periodo iniziale di applicazione dell’inibitore di questi canali, ovvero quando solo una parte dei canali era stata bloccata. Ho trovato che 1) i canali del Ca2+ di tipo P/Q svolgono un ruolo fondamentale nel controllare sia la trasmissione sinaptica eccitatoria sia quella inibitoria sulle cellule piramidali durante l’attività ricorrente di circuito sottostante gli up-state. Tuttavia, il blocco di questi canali riduce maggiormente l’inibizione ricorrente rispetto all’eccitazione, spostando di conseguenza l’equilibrio eccitazione-inibizione a favore dell’eccitazione. 2) Quando, come risultato del blocco dei canali del Ca2+ di tipo P/Q, il rapporto Ge/Gi supera un valore critico, l’attività spontanea di circuito cambia e gli up-state vengono trasformati in eventi simili alle scariche epilettiformi interictali. Questi dati suggeriscono che, nella corteccia cerebrale, i canali del Ca2+ di tipo P/Q svolgono un ruolo predominante nel controllo della trasmissione sinaptica inibitoria rispetto a quella eccitatoria. Dal momento che in molte sinapsi corticali, i canali del Ca2+ di tipo P/Q e di tipo N (denominati anche CaV2.2) cooperano nel controllare la trasmissione sinaptica, ho studiato anche l’effetto del blocco dei canali del Ca2+ di tipo N sull’attività ad up-state. L’inibizione farmacologica di questi canali causa una riduzione della frequenza degli up-state, suggerendo che i canali del Ca2+ di tipo N sono coinvolti nel regolarne la frequenza. Dopo il blocco dei canali del Ca2+ di tipo N, il rapporto Ge/Gi aumenta ma non sufficientemente a trasformare gli up-state in eventi epilettiformi simil-interictali. L’obiettivo della seconda parte del mio progetto è stato quello di studiare i meccanismi, ancora non noti, alla base della facilitazione della CSD sperimentale nel topo FHM2 KI. Dopo aver determinato le condizioni sperimentali in cui poter osservare la facilitazione della CSD in vitro, ho indagato tre possibili meccanismi che potrebbero spiegare la facilitazione della CSD nel topo eterozigote FHM2 KI, in fettine acute di corteccia somatosensoriale di topo. Dato lo specifico accoppiamento sia funzionale che strutturale negli astrociti tra la α2 Na,K-ATPasi e i trasportatori del glutammato a livello delle sinapsi corticali glutammatergiche (Cholet et al., 2002), ho verificato se la perdita di funzione della α2 Na,K-ATPasi compromettesse la rimozione, mediata dagli astrociti, del glutammato dalla fessura sinaptica durante l’attività neuronale. Ho pertanto valutato il tasso di rimozione del glutammato misurando elettrofisiologicamente la corrente attivata sinapticamente mediata dai trasportatori del glutammato (STC), indotta negli astrociti dello strato 1 attraverso la stimolazione extracellulare delle afferenze neuronali nello stesso strato sia con singoli impulsi che con treni di impulsi ad alta frequenza (50 and 100 Hz). Ho isolato farmacologicamente la STC, al fine di misurarne il tempo di decadimento che fornisce una misura relativa della rimozione del glutammato mediata dagli astrociti (Bergles and Jahr, 1997; Diamond and Jahr, 2000). Ho trovato che la rimozione del glutammato rilasciato è effettivamente più lenta nei topi FHM2 KI rispetto ai topi WT. Il rallentamento della rimozione del glutammato era più pronunciato dopo un treno di impulsi rispetto a dopo un singolo stimolo e aumentava all’aumentare della frequenza del treno. I miei dati dimostrano che la perdita di funzione della α2 Na,K-ATPasi compromette la rimozione del glutammato e suggeriscono che la rimozione del glutammato diventa più inefficiente all’aumentare della frequenza dell’attività corticale. Sorprendentemente, l’ampiezza della STC dopo un singolo stimolo era più grande nel topo FHM2 KI che nel topo WT. Dal momento che l’ampiezza della STC è proporzionale al rilascio di glutammato evocato alle sinapsi dalla stimolazione extracellulare (Bergles and Jahr, 1997; Diamond and Jahr, 2000), questo risultato potrebbe suggerire che la stimolazione extracellulare provoca un rilascio di glutammato maggiore nel topo FHM2 KI che nel topo WT. Infatti, durante stimolazioni ripetute, la STC deprime di più nel topo FHM2 KI che nel topo WT, come previsto nel caso di probabilità di rilascio di glutammato aumentata nel topo FHM2 KI. Considerato il ruolo chiave dei recettori NMDA nel ciclo di feedback positivo che innesca la CSD (Tottene et al., 2011; Pietrobon and Moskowitz, 2014), sia la ridotta rimozione del glutammato sia l’aumentato rilascio del neurotrasmettitore potrebbero essere implicati nella facilitazione osservata nel topo FHM2 KI. Visto che molti modelli della CSD includono un aumento della concentrazione extracellulare di K+ al di sopra di un valore critico, come un evento innescante la CSD (Pietrobon and Moskowitz, 2014), e alla luce delle evidenze farmacologiche che indicano che l’α2 e/o l’α3 Na,K-ATPasi partecipano alla rimozione del K+ dallo spazio extracellulare durante l’attività neuronale intensa (D’Ambrosio et al., 2002; Kofuji and Newman, 2004), ho indagato se la rimozione del K+ mediata dagli astrociti fosse compromessa nel topo FHM2 KI. Ho registrato elettrofisiologicamente la corrente sostenuta indotta negli astrociti dello strato 1 da stimolazione extracellulare; questa corrente è per lo più dovuta all’influsso di K+ attraverso i canali Kir e il suo tempo di decadimento fornisce una misura indiretta della velocità di rimozione del K+ mediata dagli astrociti. Questi esperimenti preliminari evidenziano che il tempo di decadimento della corrente di K+ evocata da treni di impulsi è simile nel topo FHM2 KI e nel topo WT. Se tale risultato venisse confermato, indicherebbe che non ci sono variazioni nel tasso di rimozione del K+ nel topo FHM2 KI rispetto al topo WT. Dal momento che l’α2 Na,K-ATPasi è strettamente accoppiata allo scambiatore Na+/Ca2+ a livello di microdomini di membrana sovrapposti al reticolo endoplasmatico (Lencesova et al., 2004; Golovina et al., 2003), abbiamo valutato se il contenuto di Ca2+ nei depositi intracellulari degli astrociti nel topo FHM2 KI fosse aumentata. Abbiamo ottenuto una misura indiretta della quantità di Ca2+ nei depositi andando a misurare negli astrociti corticali in coltura i transienti di Ca2+ indotti da ionomicina in un mezzo senza Ca2+. Il transiente di Ca2+ nel topo FHM2 KI era maggiore che nel topo WT, indicando un aumentato contenuto di Ca2+ nei depositi degli astrociti del topo FHM2 KI. Misurando la soglia e la velocita della CSD dopo aver svuotato i depositi di Ca2+ usando acido ciclopiazonico (CPA), un inibitore della SERCA, ho osservato che lo svuotamento delle riserve di Ca2+ riduce la facilitazione della CSD nel topo FHM2 KI, senza influenzare la CSD nel topo WT. Questo risultato suggerisce che l’aumentata concentrazione di Ca2+ all’interno dei depositi degli astrociti è coinvolta nella facilitazione della CSD sperimentale nel topo FHM2 KI.
1-feb-2015
Inglese
familial hemiplegic migraine, CaV2.1, astrocytes, Na/K-ATPase, patch clamp recordings
PIETROBON, DANIELA
PIETROBON, DANIELA
Università degli studi di Padova
File in questo prodotto:
File Dimensione Formato  
capuani_clizia_tesi.pdf

accesso aperto

Dimensione 4.61 MB
Formato Adobe PDF
4.61 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/83781
Il codice NBN di questa tesi è URN:NBN:IT:UNIPD-83781