This booklet collects the results of my work as a doctoral student of the Ph.D. School in Physics, Astrophysics and Applied Physics at Universita degli Studi di Milano, that has been carried out since November 2020 at Istituto Officina dei Materiali of Consiglio Nazionale delle Ricerche (IOM-CNR) and within the framework of Nanoscale Foundries and Fine Analysis (NFFA) consortium. My experimental activity addressed the coupling of magnetic and acoustic degrees of freedom in transition-metal ferromagnetic systems. Within the NFFA-SPRINT laboratory, hosted in the premises of the facility FERMI@Elettra (Elettra-Sincrotrone Trieste), I developed a setup to perform optical Transient-Grating spectroscopy, and correlative time-resolved optical spectroscopies (time-resolved reflectivity and polarimetry). Via sub-picosecond optical pulses, acoustic and magnetic transients are impulsively generated: their intertwined evolution and decay are monitored via time-resolved optical probing. In a first experiment, a Ni thin film was investigated via Transient-Grating spectroscopy. Acoustically-driven magnetization precession was observed at the condition of crossing of phononic and magnonic dispersions, at finite wavevector. With the aid of correlative ferromagnetic resonance measurements the boundary of applicability of the proposed experimental approach was established. In a second experiment, time-resolved magneto-optical polarimetry was employed to investigate magneto-acoustic waves excited in a ferromagnetic nanostructured array. The details of the magnon-phonon mode crossing allowed to identify experimental features which qualify the degree of coherence in the coupling; a Hamiltonian model was proposed to account for the observations.

TIME RESOLVED PROBING OF MAGNETO-ELASTIC EXCITATIONS IN MAGNETIC MATERIALS

CARRARA, PIETRO
2024

Abstract

This booklet collects the results of my work as a doctoral student of the Ph.D. School in Physics, Astrophysics and Applied Physics at Universita degli Studi di Milano, that has been carried out since November 2020 at Istituto Officina dei Materiali of Consiglio Nazionale delle Ricerche (IOM-CNR) and within the framework of Nanoscale Foundries and Fine Analysis (NFFA) consortium. My experimental activity addressed the coupling of magnetic and acoustic degrees of freedom in transition-metal ferromagnetic systems. Within the NFFA-SPRINT laboratory, hosted in the premises of the facility FERMI@Elettra (Elettra-Sincrotrone Trieste), I developed a setup to perform optical Transient-Grating spectroscopy, and correlative time-resolved optical spectroscopies (time-resolved reflectivity and polarimetry). Via sub-picosecond optical pulses, acoustic and magnetic transients are impulsively generated: their intertwined evolution and decay are monitored via time-resolved optical probing. In a first experiment, a Ni thin film was investigated via Transient-Grating spectroscopy. Acoustically-driven magnetization precession was observed at the condition of crossing of phononic and magnonic dispersions, at finite wavevector. With the aid of correlative ferromagnetic resonance measurements the boundary of applicability of the proposed experimental approach was established. In a second experiment, time-resolved magneto-optical polarimetry was employed to investigate magneto-acoustic waves excited in a ferromagnetic nanostructured array. The details of the magnon-phonon mode crossing allowed to identify experimental features which qualify the degree of coherence in the coupling; a Hamiltonian model was proposed to account for the observations.
22-gen-2024
Inglese
ROSSI, GIORGIO
PARIS, MATTEO
Università degli Studi di Milano
179
File in questo prodotto:
File Dimensione Formato  
phd_unimi_R12807.pdf

accesso aperto

Dimensione 7.21 MB
Formato Adobe PDF
7.21 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/84534
Il codice NBN di questa tesi è URN:NBN:IT:UNIMI-84534