This thesis is concerned with the study of qualitative properties of solutions of the minimal surface equation and of a class of prescribed mean curvature equations on complete Riemannian manifolds. We derive global gradient bounds for non-negative solutions of such equations on manifolds satisfying a uniform Ricci lower bound and we obtain Liouville-type theorems and other rigidity results on Riemannian manifolds with non-negative Ricci curvature. The proof of the aforementioned global gradient bounds for non-negative solutions u is based on the application of the maximum principle to an elliptic differential inequality satisfied by a suitable auxiliary function z=f(u,|Du|), in the spirit of Bernstein’s method of a priori estimates for nonlinear PDEs and of Yau’s proof of global gradient bounds for harmonic functions on complete Riemannian manifolds. The particular choice of the auxiliary function z parallels the one in Korevaar’s proof of a priori gradient estimates for the prescribed mean curvature equation in Euclidean space. The rigidity results obtained in the last part of the thesis include a Liouville theorem for positive solutions of the minimal surface equation on complete Riemannian manifolds with non-negative Ricci curvature, a splitting theorem for complete parabolic manifolds of non-negative sectional curvature supporting non-constant solutions with linear growth of the minimal surface equation, and a splitting theorem for domains of complete parabolic manifolds with non-negative Ricci curvature supporting non-constant solutions of overdetermined problems involving the mean curvature operator.
GLOBAL GRADIENT BOUNDS FOR SOLUTIONS OF PRESCRIBED MEAN CURVATURE EQUATIONS ON RIEMANNIAN MANIFOLDS
COLOMBO, GIULIO
2021
Abstract
This thesis is concerned with the study of qualitative properties of solutions of the minimal surface equation and of a class of prescribed mean curvature equations on complete Riemannian manifolds. We derive global gradient bounds for non-negative solutions of such equations on manifolds satisfying a uniform Ricci lower bound and we obtain Liouville-type theorems and other rigidity results on Riemannian manifolds with non-negative Ricci curvature. The proof of the aforementioned global gradient bounds for non-negative solutions u is based on the application of the maximum principle to an elliptic differential inequality satisfied by a suitable auxiliary function z=f(u,|Du|), in the spirit of Bernstein’s method of a priori estimates for nonlinear PDEs and of Yau’s proof of global gradient bounds for harmonic functions on complete Riemannian manifolds. The particular choice of the auxiliary function z parallels the one in Korevaar’s proof of a priori gradient estimates for the prescribed mean curvature equation in Euclidean space. The rigidity results obtained in the last part of the thesis include a Liouville theorem for positive solutions of the minimal surface equation on complete Riemannian manifolds with non-negative Ricci curvature, a splitting theorem for complete parabolic manifolds of non-negative sectional curvature supporting non-constant solutions with linear growth of the minimal surface equation, and a splitting theorem for domains of complete parabolic manifolds with non-negative Ricci curvature supporting non-constant solutions of overdetermined problems involving the mean curvature operator.File | Dimensione | Formato | |
---|---|---|---|
phd_unimi_R12112.pdf
accesso aperto
Dimensione
646.72 kB
Formato
Adobe PDF
|
646.72 kB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/84946
URN:NBN:IT:UNIMI-84946