The thesis addresses the possibility of using mathematical methods, simulation techniques, repurposed physical theories and artificial intelligence algorithms to fulfill clinical needs in neuroradiology and neurology. The aim is to describe and to predict disease patterns and its evolution over time as well as to support clinical decision-making processes. The thesis is divided into three parts. Part 1 is related to the development of a Radiomic workflow combined with Machine Learning algorithms in order to predict parameters that quantify muscular anatomical involvement in neuromuscular diseases, with special focus on Facioscapulohumeral dystrophy. The proposed workflow relies on conventional Magnetic Resonance Imaging sequences available in most neuromuscular centers and it can be used as a non-invasive tool to monitor even fine change in neuromuscular disorders and to evaluate longitudinal diseases’ progression over time. Part 2 is about the description of a kinetic model for tumor growth by means of classical tools of statistical mechanics for many-agent systems also taking into account the effects of clinical uncertainties related to patients’ variability in tumor progression. The action of therapeutic protocols is modeled as feedback control at the microscopic level. The controlled scenario allows the dumping of uncertainties associated with the variability in tumors’ dynamics. Suitable numerical methods, based on Stochastic Galerkin formulation of the derived kinetic model, are introduced. Part 3 refers to a still-on going project that attempts to describe a brain portion through a quantum field theory and to simulate its behavior through the implementation of a neural network with an ad-hoc activation function mimicking the biological neuron model response function. Under considered conditions, the brain portion activity can be expressed up to O(6), i.e., up to six fields interaction, as a Gaussian Process. The defined quantum field framework may also be extended to the case of a Non-Gaussian Process behavior, or rather to an interacting quantum field theory in a Wilsonian Effective Field theory approach.
La tesi affronta la possibilità di utilizzare metodi matematici, tecniche di simulazione, teorie fisiche riadattate e algoritmi di intelligenza artificiale per soddisfare le esigenze cliniche in neuroradiologia e neurologia al fine di descrivere e prevedere i patterns e l’evoluzione temporale di una malattia, nonché di supportare il processo decisionale clinico. La tesi è suddivisa in tre parti. La prima parte riguarda lo sviluppo di un workflow radiomico combinato con algoritmi di Machine Learning al fine di prevedere parametri che favoriscono la descrizione quantitativa dei cambiamenti anatomici e del coinvolgimento muscolare nei disordini neuromuscolari, con particolare attenzione alla distrofia facioscapolo-omerale. Il workflow proposto si basa su sequenze di risonanza magnetica convenzionali disponibili nella maggior parte dei centri neuromuscolari e, dunque, può essere utilizzato come strumento non invasivo per monitorare anche i più piccoli cambiamenti nei disturbi neuromuscolari oltre che per la valutazione della progressione della malattia nel tempo. La seconda parte riguarda l’utilizzo di un modello cinetico per descrivere la crescita tumorale basato sugli strumenti della meccanica statistica per sistemi multi-agente e che tiene in considerazione gli effetti delle incertezze cliniche legate alla variabilità della progressione tumorale nei diversi pazienti. L'azione dei protocolli terapeutici è modellata come controllo che agisce a livello microscopico modificando la natura della distribuzione risultante. Viene mostrato come lo scenario controllato permetta di smorzare le incertezze associate alla variabilità della dinamica tumorale. Inoltre, sono stati introdotti metodi di simulazione numerica basati sulla formulazione stochastic Galerkin del modello cinetico sviluppato. La terza parte si riferisce ad un progetto ancora in corso che tenta di descrivere una porzione di cervello attraverso la teoria quantistica dei campi e di simularne il comportamento attraverso l'implementazione di una rete neurale con una funzione di attivazione costruita ad hoc e che simula la funzione di risposta del modello biologico neuronale. E’ stato ottenuto che, nelle condizioni studiate, l'attività della porzione di cervello può essere descritta fino a O(6), i.e, considerando l’interazione fino a sei campi, come un processo gaussiano. Il framework quantistico definito può essere esteso anche al caso di un processo non gaussiano, ovvero al caso di una teoria di campo quantistico interagente utilizzando l’approccio della teoria wilsoniana di campo efficace.
Artificial Intelligence, Mathematical Modeling and Magnetic Resonance Imaging for Precision Medicine in Neurology and Neuroradiology
COLELLI, GIULIA
2022
Abstract
The thesis addresses the possibility of using mathematical methods, simulation techniques, repurposed physical theories and artificial intelligence algorithms to fulfill clinical needs in neuroradiology and neurology. The aim is to describe and to predict disease patterns and its evolution over time as well as to support clinical decision-making processes. The thesis is divided into three parts. Part 1 is related to the development of a Radiomic workflow combined with Machine Learning algorithms in order to predict parameters that quantify muscular anatomical involvement in neuromuscular diseases, with special focus on Facioscapulohumeral dystrophy. The proposed workflow relies on conventional Magnetic Resonance Imaging sequences available in most neuromuscular centers and it can be used as a non-invasive tool to monitor even fine change in neuromuscular disorders and to evaluate longitudinal diseases’ progression over time. Part 2 is about the description of a kinetic model for tumor growth by means of classical tools of statistical mechanics for many-agent systems also taking into account the effects of clinical uncertainties related to patients’ variability in tumor progression. The action of therapeutic protocols is modeled as feedback control at the microscopic level. The controlled scenario allows the dumping of uncertainties associated with the variability in tumors’ dynamics. Suitable numerical methods, based on Stochastic Galerkin formulation of the derived kinetic model, are introduced. Part 3 refers to a still-on going project that attempts to describe a brain portion through a quantum field theory and to simulate its behavior through the implementation of a neural network with an ad-hoc activation function mimicking the biological neuron model response function. Under considered conditions, the brain portion activity can be expressed up to O(6), i.e., up to six fields interaction, as a Gaussian Process. The defined quantum field framework may also be extended to the case of a Non-Gaussian Process behavior, or rather to an interacting quantum field theory in a Wilsonian Effective Field theory approach.File | Dimensione | Formato | |
---|---|---|---|
Tesi_PhD_9_versione_finale-1.pdf
accesso aperto
Dimensione
5.31 MB
Formato
Adobe PDF
|
5.31 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/85034
URN:NBN:IT:UNIPV-85034