The thesis deals with perturbation theory for non-linear Hamiltonian partial differential equations on high dimensional compact manifolds. In particular, we prove almost global existence for some PDEs of general interest and we provide a suitable algebraic and geometric framework. Proofs are based on normal form methods.

NORMAL FORM METHODS FOR SOME NON LINEAR HAMILTONIAN PDES IN HIGHER DIMENSION

MONZANI, FRANCESCO
2024

Abstract

The thesis deals with perturbation theory for non-linear Hamiltonian partial differential equations on high dimensional compact manifolds. In particular, we prove almost global existence for some PDEs of general interest and we provide a suitable algebraic and geometric framework. Proofs are based on normal form methods.
23-apr-2024
Inglese
BAMBUSI, DARIO PAOLO
BAMBUSI, DARIO PAOLO
Università degli Studi di Milano
127
File in questo prodotto:
File Dimensione Formato  
phd_unimi_R12804.pdf

accesso aperto

Dimensione 910.55 kB
Formato Adobe PDF
910.55 kB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/85448
Il codice NBN di questa tesi è URN:NBN:IT:UNIMI-85448