Predire la futura posizione di un oggetto in movimento che viene nascosto per un breve periodo di tempo è molto importante per interagire con le numerose variabili dinamiche del nostro mondo circostante. Per predire quando questo oggetto riapparirà alla nostra vista è necessario estrapolarne il movimento (motion extrapolation, ME) durante il periodo in cui non è visibile. Ci sono molte lacune in letteratura riguardo i meccanismi sottostanti a questa apparentemente semplice operazione e questa tesi mira proprio allo studio di questi. Esperimenti comportamentali solitamente utilizzano un compito in cui si chiede ai partecipanti di premere un tasto quando ritengono che un oggetto in movimento, che viene nascosto da un occlusore durante la parte finale del suo percorso, abbia raggiunto una certa posizione spaziale indicata da un indizio. L’istruzione più comune data ai partecipanti è quella di fare una stima del tempo di contatto fra l’oggetto target e l’indizio (time to contact, TTC) (Tresilian, 1999; Rosenbaum, 1972). In questo tipo di esperimento il target non ricompare mai. Un altro paradigma è quello di chiedere ai soggetti di riportare se un target, che viene nascosto per un periodo di tempo più o meno lungo, ricompare in tempo, o in anticipo, o in ritardo rispetto a quanto atteso dai partecipanti nel caso in cui il target mantenesse un moto rettilineo uniforme (Makin, Poliakoff & El-Deredy, 2009; Makin, Poliakoff, Ackerley & El-Deredy, 2012). Esperimenti Nella prima parte di questa tesi (Capitolo II), sono andato ad investigare il ruolo che assume il sistema di memoria visiva durante l’estrapolazione di movimento. Inoltre mi sono chiesto se le illusioni che modificano la percezione di velocità interferiscano con l’estrapolazione di movimento andando a modificare la stima del tempo di contatto di due target con differente velocità esperita, ma stessa velocità fisica. La velocità percepita di un oggetto veniva modificata cambiando il contrasto o la dimensione degli oggetti (Thompson, 1972; Epstein 1978). I risultati mostrano come in un compito di stima del tempo di contatto i partecipanti stimino un tempo di contatto più lungo quando la velocità percepita viene diminuita e un tempo di contatto più corto quando la velocità percepita è aumentata nonostante la velocità fisica sia sempre la stessa. Pertanto l’illusione di velocità viene mantenuta nel sistema di memoria visiva influenzando la stima del tempo di contatto. Il Capitolo III, prende in esame la relazione fra movimento reale e movimento estrapolato. Gilden e colleghi (1995) hanno mostrato come un adattamento visivo abbia un effetto sul giudizio della stima del tempo di contatto. Un ulteriore passo rispetto a questa ricerca è stato indagare se anche effetti di adattamento e priming rapidi possano influire sul giudizio del TTC. Adattamento e priming visivo rapidi avvengono a livelli corticali di elaborazione molto precoci, e se questi hanno un effetto sul TTC è ragionevole pensare per estensione che il movimento estrapolato possa essere elaborato anch’esso (o almeno in parte) a questi livelli. Ai partecipanti che hanno preso parte a questo esperimento veniva mostrato nella stessa regione retinica dove successivamente il target veniva occluso, uno stimolo di adattamento lungo (600ms) o uno stimolo di adattamento breve (80ms) costituito da una tessitura che si muoveva o nella stessa direzione del target o nella direzione opposta. I risultati mostrano come un adattamento lungo nella stessa direzione del target produca una stima maggiore del TTC (similmente ad un motion aftereffect), mentre un adattamento breve produca una sottostima (similmente ad un effetto di priming). Questo indica che l’estrapolazione del movimento possa essere processato (almeno parzialmente) addirittura ai primi livelli dell’elaborazione visiva del movimento dove i meccanismi di priming e adattamento rapidi vengono computati. Il Capitolo IV della mia tesi esplora non solo i fattori visivi del movimento estrapolato ma anche l’elaborazione temporale. Una prima questione è se l’elaborazione temporale in un compito TTC possa essere descritto da una componente elettrofisiologica come la CNV. Una seconda questione è trovare correlati elettrofisiologici per l’estrapolazione del movimento. I partecipanti che prendevano parte all’esperimento venivano adattati con una tessitura in movimento usando la stessa procedura usata da Gilden e colleghi (1995) mentre l’attività elettrocorticale veniva registrata. L’adattamento produceva un bias nella stima del tempo di contatto e la direzione dell’adattamento modulava l’ampiezza della CNV. Infine una deflessione negativa (N190) è stata trovata negli elettrodi temporo-occipitali come indice dell’estrapolazione del movimento. Questi risultati mostrano come durante un compito di TTC, l’elaborazione temporale sia evidenziata e descritta dalla componente CNV, e come questa componente possa essere modulata da un adattamento visivo di movimento. Inoltre la N190 trovata in questo studio potrebbe essere un marker dell’attivazione dei meccanismi alla base dell’estrapolazione del movimento. Nel Capitolo V, l’obiettivo è stato quello di distinguere tra “estrapolazione” e “interpolazione” del movimento invisibile. L’estrapolazione è la capacità di estrarre la traiettoria, velocità, direzione e inferire approssimativamente la posizione di un oggetto in movimento non più visibile, perché nascosto da un occlusore, grazie alle informazioni presentate durante il suo percorso visibile. L’interpolazione è concetto molto simile al precedente, quindi anche in questo caso grazie al movimento visibile si può estrarre la traiettoria, velocità e direzione dell’oggetto nascosto da un occlusore. La sostanziale differenza è che per interpolare sono necessari degli indizi visivi posizionati lungo la traiettoria invisibile. Se l’occlusore è invisibile e la traiettoria è simmetrica rispetto a uno di questi indizi spaziali, è possibile unire questi indizi (punti) in una mappa spazio-temporale e inferire dove e quando l’oggetto ricomparirà, cosa non possibile in assenza di indizi spaziali e quindi nella condizione di sola estrapolazione. In un nuovo tipo di compito i partecipanti all’esperimento dovevano premere un tasto il più velocemente possibile, quando vedevano ricomparire un target in movimento rettilineo uniforme che veniva nascosto da un occlusore per un certo periodo di tempo. I risultati mostrano che è possibile addirittura anticipare la ricomparsa del target. Infatti talvolta i partecipanti premevano il tasto di risposta qualche centesimo di secondo prima che il target effettivamente ricomparisse. Questo però era possibile solo in alcune circostanze: 1) l’occlusore non doveva essere messo nella zona in cui è presente la macchia cieca, dove non ci sono proiezioni alla corteccia, 2) doveva esserci il movimento visibile (traiettoria visibile) del target prima della scomparsa e 3) quando l’occlusore era totalmente invisibile un indizio visivo, come la croce di fissazione, doveva essere presentato per indicare la parte centrale della traiettoria invisibile. Quando queste condizioni erano presenti, i partecipanti potevano usare l’informazione spaziale data dal punto di scomparsa e dalla croce di fissazione che indicava il centro della traiettoria invisibile, per inferire per simmetria il punto di ricomparsa dello stimolo. Quindi, avendo a disposizione un set di punti discreti nello spazio sui quali stimare in quale momento il target li avrebbe attraversati, i partecipanti probabilmente interpolavano questi punti in una mappa spazio-temporale per inferire dove e quando il target riappariva. Questo processo di interpolazione di movimento è considerato come un processo di filling-in amodale. L’ultima parte della mia tesi coinvolge un’applicazione pratica dell’estrapolazione del movimento. Nel capitolo V, viene mostrato come sia impossibile interpolare quando l’occlusore è posto sopra la macchia cieca e quando mancano indizi che nella traiettoria invisibile. In questo caso infatti i partecipanti rispondevano con un vero tempo di reazione e non anticipavano la risposta. Pazienti con maculopatia degenerativa non possono vedere con la loro fovea dal momento che è danneggiata. Pertanto non hanno più proiezioni di questa zona retinica alla corteccia. In un compito in cui viene chiesto di premere un tasto di risposta quando un oggetto scompare nel loro scotoma o riappare dal loro scotoma è quindi improbabile che riescano ad anticipare la risposta usando un meccanismo di interpolazione. È stato condotto un esperimento in cui cinque soggetti con maculopatia degenerativa dovevano appunto rispondere il più velocemente possibile quando un pallino in movimento scompariva dentro il loro scotoma e premere di nuovo lo stesso tasto quando questo ricompariva dal loro scotoma. I partecipanti ripetevano questo tipo di compito per numerose traiettorie (lineari) del pallino. Unendo i punti nello spazio in cui il paziente riportava di non vedere o di vedere nuovamente il target, un programma al computer riproduceva forma e dimensioni dello scotoma. Lo scotoma trovato veniva poi confrontato con quello ottenuto con la microperimetria Nidek-MP1. Una correlazione lineare con un R2 di circa 0.8 è stata trovata nella misurazione dello scotoma con la Nidek-MP1 e lo scotoma misurato con quest’ultimo esperimento unendo i punti nello spazio in cui i pazienti vedevano ricomparire il pallino. Pertanto questo programma molto semplice potrà nel futuro essere usato per misurare la dimensione di uno scotoma quando apparecchiature costose e complesse come la Nidek-MP1 non sono disponibili.

The extrapolation of occluded motion: basic mechanism and application

BATTAGLINI, LUCA
2015

Abstract

Predire la futura posizione di un oggetto in movimento che viene nascosto per un breve periodo di tempo è molto importante per interagire con le numerose variabili dinamiche del nostro mondo circostante. Per predire quando questo oggetto riapparirà alla nostra vista è necessario estrapolarne il movimento (motion extrapolation, ME) durante il periodo in cui non è visibile. Ci sono molte lacune in letteratura riguardo i meccanismi sottostanti a questa apparentemente semplice operazione e questa tesi mira proprio allo studio di questi. Esperimenti comportamentali solitamente utilizzano un compito in cui si chiede ai partecipanti di premere un tasto quando ritengono che un oggetto in movimento, che viene nascosto da un occlusore durante la parte finale del suo percorso, abbia raggiunto una certa posizione spaziale indicata da un indizio. L’istruzione più comune data ai partecipanti è quella di fare una stima del tempo di contatto fra l’oggetto target e l’indizio (time to contact, TTC) (Tresilian, 1999; Rosenbaum, 1972). In questo tipo di esperimento il target non ricompare mai. Un altro paradigma è quello di chiedere ai soggetti di riportare se un target, che viene nascosto per un periodo di tempo più o meno lungo, ricompare in tempo, o in anticipo, o in ritardo rispetto a quanto atteso dai partecipanti nel caso in cui il target mantenesse un moto rettilineo uniforme (Makin, Poliakoff & El-Deredy, 2009; Makin, Poliakoff, Ackerley & El-Deredy, 2012). Esperimenti Nella prima parte di questa tesi (Capitolo II), sono andato ad investigare il ruolo che assume il sistema di memoria visiva durante l’estrapolazione di movimento. Inoltre mi sono chiesto se le illusioni che modificano la percezione di velocità interferiscano con l’estrapolazione di movimento andando a modificare la stima del tempo di contatto di due target con differente velocità esperita, ma stessa velocità fisica. La velocità percepita di un oggetto veniva modificata cambiando il contrasto o la dimensione degli oggetti (Thompson, 1972; Epstein 1978). I risultati mostrano come in un compito di stima del tempo di contatto i partecipanti stimino un tempo di contatto più lungo quando la velocità percepita viene diminuita e un tempo di contatto più corto quando la velocità percepita è aumentata nonostante la velocità fisica sia sempre la stessa. Pertanto l’illusione di velocità viene mantenuta nel sistema di memoria visiva influenzando la stima del tempo di contatto. Il Capitolo III, prende in esame la relazione fra movimento reale e movimento estrapolato. Gilden e colleghi (1995) hanno mostrato come un adattamento visivo abbia un effetto sul giudizio della stima del tempo di contatto. Un ulteriore passo rispetto a questa ricerca è stato indagare se anche effetti di adattamento e priming rapidi possano influire sul giudizio del TTC. Adattamento e priming visivo rapidi avvengono a livelli corticali di elaborazione molto precoci, e se questi hanno un effetto sul TTC è ragionevole pensare per estensione che il movimento estrapolato possa essere elaborato anch’esso (o almeno in parte) a questi livelli. Ai partecipanti che hanno preso parte a questo esperimento veniva mostrato nella stessa regione retinica dove successivamente il target veniva occluso, uno stimolo di adattamento lungo (600ms) o uno stimolo di adattamento breve (80ms) costituito da una tessitura che si muoveva o nella stessa direzione del target o nella direzione opposta. I risultati mostrano come un adattamento lungo nella stessa direzione del target produca una stima maggiore del TTC (similmente ad un motion aftereffect), mentre un adattamento breve produca una sottostima (similmente ad un effetto di priming). Questo indica che l’estrapolazione del movimento possa essere processato (almeno parzialmente) addirittura ai primi livelli dell’elaborazione visiva del movimento dove i meccanismi di priming e adattamento rapidi vengono computati. Il Capitolo IV della mia tesi esplora non solo i fattori visivi del movimento estrapolato ma anche l’elaborazione temporale. Una prima questione è se l’elaborazione temporale in un compito TTC possa essere descritto da una componente elettrofisiologica come la CNV. Una seconda questione è trovare correlati elettrofisiologici per l’estrapolazione del movimento. I partecipanti che prendevano parte all’esperimento venivano adattati con una tessitura in movimento usando la stessa procedura usata da Gilden e colleghi (1995) mentre l’attività elettrocorticale veniva registrata. L’adattamento produceva un bias nella stima del tempo di contatto e la direzione dell’adattamento modulava l’ampiezza della CNV. Infine una deflessione negativa (N190) è stata trovata negli elettrodi temporo-occipitali come indice dell’estrapolazione del movimento. Questi risultati mostrano come durante un compito di TTC, l’elaborazione temporale sia evidenziata e descritta dalla componente CNV, e come questa componente possa essere modulata da un adattamento visivo di movimento. Inoltre la N190 trovata in questo studio potrebbe essere un marker dell’attivazione dei meccanismi alla base dell’estrapolazione del movimento. Nel Capitolo V, l’obiettivo è stato quello di distinguere tra “estrapolazione” e “interpolazione” del movimento invisibile. L’estrapolazione è la capacità di estrarre la traiettoria, velocità, direzione e inferire approssimativamente la posizione di un oggetto in movimento non più visibile, perché nascosto da un occlusore, grazie alle informazioni presentate durante il suo percorso visibile. L’interpolazione è concetto molto simile al precedente, quindi anche in questo caso grazie al movimento visibile si può estrarre la traiettoria, velocità e direzione dell’oggetto nascosto da un occlusore. La sostanziale differenza è che per interpolare sono necessari degli indizi visivi posizionati lungo la traiettoria invisibile. Se l’occlusore è invisibile e la traiettoria è simmetrica rispetto a uno di questi indizi spaziali, è possibile unire questi indizi (punti) in una mappa spazio-temporale e inferire dove e quando l’oggetto ricomparirà, cosa non possibile in assenza di indizi spaziali e quindi nella condizione di sola estrapolazione. In un nuovo tipo di compito i partecipanti all’esperimento dovevano premere un tasto il più velocemente possibile, quando vedevano ricomparire un target in movimento rettilineo uniforme che veniva nascosto da un occlusore per un certo periodo di tempo. I risultati mostrano che è possibile addirittura anticipare la ricomparsa del target. Infatti talvolta i partecipanti premevano il tasto di risposta qualche centesimo di secondo prima che il target effettivamente ricomparisse. Questo però era possibile solo in alcune circostanze: 1) l’occlusore non doveva essere messo nella zona in cui è presente la macchia cieca, dove non ci sono proiezioni alla corteccia, 2) doveva esserci il movimento visibile (traiettoria visibile) del target prima della scomparsa e 3) quando l’occlusore era totalmente invisibile un indizio visivo, come la croce di fissazione, doveva essere presentato per indicare la parte centrale della traiettoria invisibile. Quando queste condizioni erano presenti, i partecipanti potevano usare l’informazione spaziale data dal punto di scomparsa e dalla croce di fissazione che indicava il centro della traiettoria invisibile, per inferire per simmetria il punto di ricomparsa dello stimolo. Quindi, avendo a disposizione un set di punti discreti nello spazio sui quali stimare in quale momento il target li avrebbe attraversati, i partecipanti probabilmente interpolavano questi punti in una mappa spazio-temporale per inferire dove e quando il target riappariva. Questo processo di interpolazione di movimento è considerato come un processo di filling-in amodale. L’ultima parte della mia tesi coinvolge un’applicazione pratica dell’estrapolazione del movimento. Nel capitolo V, viene mostrato come sia impossibile interpolare quando l’occlusore è posto sopra la macchia cieca e quando mancano indizi che nella traiettoria invisibile. In questo caso infatti i partecipanti rispondevano con un vero tempo di reazione e non anticipavano la risposta. Pazienti con maculopatia degenerativa non possono vedere con la loro fovea dal momento che è danneggiata. Pertanto non hanno più proiezioni di questa zona retinica alla corteccia. In un compito in cui viene chiesto di premere un tasto di risposta quando un oggetto scompare nel loro scotoma o riappare dal loro scotoma è quindi improbabile che riescano ad anticipare la risposta usando un meccanismo di interpolazione. È stato condotto un esperimento in cui cinque soggetti con maculopatia degenerativa dovevano appunto rispondere il più velocemente possibile quando un pallino in movimento scompariva dentro il loro scotoma e premere di nuovo lo stesso tasto quando questo ricompariva dal loro scotoma. I partecipanti ripetevano questo tipo di compito per numerose traiettorie (lineari) del pallino. Unendo i punti nello spazio in cui il paziente riportava di non vedere o di vedere nuovamente il target, un programma al computer riproduceva forma e dimensioni dello scotoma. Lo scotoma trovato veniva poi confrontato con quello ottenuto con la microperimetria Nidek-MP1. Una correlazione lineare con un R2 di circa 0.8 è stata trovata nella misurazione dello scotoma con la Nidek-MP1 e lo scotoma misurato con quest’ultimo esperimento unendo i punti nello spazio in cui i pazienti vedevano ricomparire il pallino. Pertanto questo programma molto semplice potrà nel futuro essere usato per misurare la dimensione di uno scotoma quando apparecchiature costose e complesse come la Nidek-MP1 non sono disponibili.
30-gen-2015
Inglese
motion, extrapolation, invisible motion
CAMPANA, GIANLUCA
PERESSOTTI, FRANCESCA
Università degli studi di Padova
128
File in questo prodotto:
File Dimensione Formato  
Battaglini_Luca_Tesi.pdf

accesso aperto

Dimensione 3.63 MB
Formato Adobe PDF
3.63 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/85883
Il codice NBN di questa tesi è URN:NBN:IT:UNIPD-85883