Nell’ultima decade, i problemi ingegneristici sono diventati sempre più complessi e le dimensioni dei relativi modelli numerici sono notevolmente aumentate. Al fine di mantenere i tempi di calcolo entro limiti ragionevoli è necessario utilizzare computer sempre più performanti ed implementare codici di calcolo più efficienti. Nella prima parte di questo elaborato sono descritte ed ampiamente utilizzate le più recenti tecniche di programmazione per il calcolo parallelo ad alte prestazioni, permettendo di sfruttare pienamente le potenzialità dei moderni software di simulazione. In particolare, il tempo di calcolo necessario per la simulazione numerica dei processi di riscaldamento per induzione magnetica è stato considerevolmente ridotto attraverso l’implementazione di solutori diretti paralleli per matrici sparse nel processo di soluzione di un software commerciale. Successivamente, grazie alla collaborazione con gli sviluppatori del solutore diretto MUMPS (MUltifrontal Massively Parallel Solver), le prestazioni di tale libreria sono state ulteriormente migliorate grazie all’utilizzo di librerie BLAS parallele. Una serie di test sono stati condotti sulla soluzione di matrici ricavate dalle analisi agli elementi finiti di problemi tipici dell’elettromagnetismo e del riscaldamento per induzione. Grazie all’introduzione di un nuovo approccio “multi-threading” e all’utilizzo di tecniche di compressione delle matrici (low-rank approximation), il team di MUMPS (Lione-Tolosa) ha sviluppato alcune funzionalità sperimentali. Nel contesto di una collaborazione tra il team di MUMPS ed il Dipartimento di Ingegneria Industriale, Università di Padova, l’utilizzo della libreria in versione sperimentale ha permesso una notevole riduzione del costo computazionale e della memoria necessaria per la fattorizzazione e la soluzione dei problemi analizzati. Nella seconda parte di questo elaborato sono riportati alcuni esempi di prototipazione virtuale attraverso software agli elementi finiti. Lo studio di sistemi multiphysics molto complessi, che comprendono fenomeni elettromagnetici, circuitali, termici e meccanici, è stato effettuato su modelli di dimensioni notevoli ed in tempi ridotti, sfruttando le tecniche di calcolo parallelo sviluppate nella prima parte di questa tesi. Infine, grazie ai miglioramenti introdotti con il calcolo parallelo, l’ottimizzazione di dispositivi elettromagnetici attraverso algoritmi stocastici multiobiettivo è stata applicata ad un problema multiphysics su modelli tridimensionali.
Application of HPC in eddy current electromagnetic problem solution
POZZA, CRISTIAN
2014
Abstract
Nell’ultima decade, i problemi ingegneristici sono diventati sempre più complessi e le dimensioni dei relativi modelli numerici sono notevolmente aumentate. Al fine di mantenere i tempi di calcolo entro limiti ragionevoli è necessario utilizzare computer sempre più performanti ed implementare codici di calcolo più efficienti. Nella prima parte di questo elaborato sono descritte ed ampiamente utilizzate le più recenti tecniche di programmazione per il calcolo parallelo ad alte prestazioni, permettendo di sfruttare pienamente le potenzialità dei moderni software di simulazione. In particolare, il tempo di calcolo necessario per la simulazione numerica dei processi di riscaldamento per induzione magnetica è stato considerevolmente ridotto attraverso l’implementazione di solutori diretti paralleli per matrici sparse nel processo di soluzione di un software commerciale. Successivamente, grazie alla collaborazione con gli sviluppatori del solutore diretto MUMPS (MUltifrontal Massively Parallel Solver), le prestazioni di tale libreria sono state ulteriormente migliorate grazie all’utilizzo di librerie BLAS parallele. Una serie di test sono stati condotti sulla soluzione di matrici ricavate dalle analisi agli elementi finiti di problemi tipici dell’elettromagnetismo e del riscaldamento per induzione. Grazie all’introduzione di un nuovo approccio “multi-threading” e all’utilizzo di tecniche di compressione delle matrici (low-rank approximation), il team di MUMPS (Lione-Tolosa) ha sviluppato alcune funzionalità sperimentali. Nel contesto di una collaborazione tra il team di MUMPS ed il Dipartimento di Ingegneria Industriale, Università di Padova, l’utilizzo della libreria in versione sperimentale ha permesso una notevole riduzione del costo computazionale e della memoria necessaria per la fattorizzazione e la soluzione dei problemi analizzati. Nella seconda parte di questo elaborato sono riportati alcuni esempi di prototipazione virtuale attraverso software agli elementi finiti. Lo studio di sistemi multiphysics molto complessi, che comprendono fenomeni elettromagnetici, circuitali, termici e meccanici, è stato effettuato su modelli di dimensioni notevoli ed in tempi ridotti, sfruttando le tecniche di calcolo parallelo sviluppate nella prima parte di questa tesi. Infine, grazie ai miglioramenti introdotti con il calcolo parallelo, l’ottimizzazione di dispositivi elettromagnetici attraverso algoritmi stocastici multiobiettivo è stata applicata ad un problema multiphysics su modelli tridimensionali.File | Dimensione | Formato | |
---|---|---|---|
Pozza_Cristian_Tesi.pdf
accesso aperto
Dimensione
5.26 MB
Formato
Adobe PDF
|
5.26 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/86017
URN:NBN:IT:UNIPD-86017