Bacterial evolution is driven by rapid adaptation to changing environments where adverse conditions must be faced. The horizontal exchange of genetic information, along with the inherent bacterial genome plasticity, are key players in the evolution of microbial populations with increased tolerance towards challenging conditions, which also include the selective pressure exerted by physical or chemical agents. A central role in microbial adaptation is exerted by the arsenal of antimicrobial agents (antibiotics, antivirals, anti- fungals etc.) used in different settings (from clinical to agriculture sector) to threat or prevent infectious diseases. The abuse and misuse of these medicines drive the evolution and selection of microbes able to survive exposure to an antimicrobial agent that was originally effective to kill the cell or arrest its growth. This phenomenon is defined as Antimicrobial Resistance (AMR). Of a great concern is especially the spread of antibiotic resistance which, day by day, erodes the efficacy of available antibiotics and compromises our ability to cure life-threatening infections caused by multidrug-resistant (MDR) pathogens. This scenario poses an urgent need for new strategies to counteract AMR. With this regard, Synthetic Biology may significantly contribute to the development of non-traditional therapies able to supplant or accompanying antibiotics use. In particular, by rewriting the genetic program of a cell, synthetic biologists aim at designing sophisticated living systems able to carry out a defined task in a reliable and predictable manner. For instance, to treat a localized AMR-associated infection, a microorganism can be rationally programmed to act as a vehicle for the in situ delivery of an antimicrobial agent different from an antibiotic and able to selectively kill resistant bacteria. This genetic program can be encoded in a synthetic circuit by leveraging a collection of biological regulatory parts and the strong programmable nature of a genetic tool named CRISPR technology. The latter can be exploited to design sequence-specific antimicrobials as a guide RNA sequence can be ad hoc designed to drive the cleavage of Cas9 nuclease towards target genes encoding for resistance determinants. In target cells, this event results in bacterial death or re-sensitization to antibiotic therapy. Although this approach has already been explored by several research groups with promising results, at least two major hurdles still have to be faced: the risk of generating new variants of resistance genes in escaper cells that have survived CRISPR targeting by repairing the DNA damage, and the need to develop a robust delivery strategy to mobilize in vivo the synthetic circuit in target bacteria. Both challenges were addressed with the research work presented in this thesis. First, to avoid the threatening consequences of Cas9 cleavage, a synthetic circuitry based on CRISPRi technology was developed as it relies on the ability of dCas9 protein to inhibit the expression of target genes without damaging the relative nucleotide sequence. This is expected to exert re-sensitization of a target pathogen population. In particular, the CRISPRi circuitry was characterized in terms of repression efficiency and multi-targeting capability in two case studies: transcriptional inhibition of model- and clinically-relevant resistance genes. Second, a delivery platform based on bacterial conjugation was exploited to mobilize the CRISPRi circuitry in target resistant bacteria. Finally, a mathematical model was implemented with the purpose to simulate the effect of a CRISPRi-based therapy on AMR pathogens and to compare different biological scenarios including the targeting and the delivery mechanisms, and eventually gaining insight into the best therapeutic strategies for in vivo use.
L’evoluzione delle specie batteriche è un processo guidato da un rapido adattamento alle mutevoli, e spesso avverse, condizioni ambientali. Lo scambio di materiale genetico attraverso meccanismi di trasferimento genico orizzontale, unito alla plasticità intrinseca del genoma batterico, gioca un ruolo fondamentale nell’evoluzione di microorganismi con potenziate capacità di adattamento ad habitat ostili. In questo processo, un ruolo centrale è ricoperto dall’arsenale di agenti antimicrobici (antibiotici, antivirali etc.) utilizzati in vari settori (contesto clinico, agricolo etc.) per trattare le malattie infettive. L’abuso e l’uso improprio di questi farmaci guida l’evoluzione e selezione di microorganismi in grado di sopravvivere al trattamento con agenti antimicrobici precedentemente risultati efficaci per debellare l’infezione da essi provocata. Questo fenomeno si definisce Resistenza Antimicrobica (AMR). Il dato più allarmante riguarda la rapida diffusione della resistenza antibiotica che, giorno dopo giorno, erode l’efficacia degli antibiotici attualmente disponibili e minaccia la capacità di trattare efficacemente infezioni potenzialmente letali. Questo scenario porta alla luce la necessità urgente di sviluppare terapie innovative capaci di sostituire o affiancare l’uso degli antibiotici. In questo contesto, la Biologia Sintetica può dare un contributo significativo. Ad esempio, per trattare un’infezione batterica localizzata, un biologo sintetico può riprogrammare razionalmente un microrganismo affinchè rilasci in situ una molecola battericida alternativa ad un antibiotico che agisce selettivamente sulla popolazione di patogeni da debellare. Questo programma genetico può essere codificato all’interno di un circuito sintetico sfruttando una collezione di parti biologiche e l’elevata versatilità della tecnologia CRISPR. Quest’ultima può essere sfruttata per progettare degli agenti antimicrobici selettivi in grado di riconoscere una sequenza distintiva nel genoma del batterio bersaglio. Disegnando opportunamente la sequenza di una guida a RNA è infatti possibile pilotare il taglio della nucleasi Cas9 sui geni di resistenza antibiotica: la degradazione del DNA bersaglio si risolve poi nella morte cellulare o nel ripristino della sensibilità antibiotica. Sebbene questo approccio sia già stato esplorato con promettenti risultati da diversi gruppi di ricerca, almeno due questioni fondamentali rimangono ancora aperte: il rischio di generare nuove varianti dei geni di resistenza nelle cellule che sfuggono alla morte tramite la riparazione del DNA danneggiato, e la necessità di sviluppare una piattaforma in grado di veicolare efficacemente la circuiteria CRISPR nei batteri resistenti. Entrambe queste sfide sono state affrontate nel progetto di ricerca presentato in questa tesi. In primo luogo, per aggirare i rischi connessi al taglio del DNA nelle cellule target, è stata sviluppata una circuiteria sintetica basata sulla tecnologia CRISPRi, la quale sfrutta la capacità della proteina dCas9 di silenziare l’espressione di un gene target senza tuttavia comprometterne la sequenza nucleotidica. L’efficienza di repressione della circuiteria CRISPRi è stata caratterizzata in due casi di studi: inibizione trascrizionale di resistenze antibiotiche modello e ad alto impatto clinico. Successivamente, una piattaforma di trasferimento genico basata sulla coniugazione batterica è stata sviluppata per veicolare il circuito CRISPRi nei batteri resistenti. Infine, è stato implementato un nuovo modello matematico per simulare l’effetto di una terapia che impiega il sistema CRISPRi, mettendo a confronto diversi scenari riguardanti il meccanismo di inibizione e il trasferimento della circuiteria, al fine di predire in silico la strategia terapeutica più efficace da utilizzare in vivo.
Progettazione e caratterizzazione di circuiti sintetici basati su tecnologia CRISPRi per inibire i geni di resistenza antibiotica nei batteri.
FRUSTERI CHIACCHIERA, ANGELICA
2022
Abstract
Bacterial evolution is driven by rapid adaptation to changing environments where adverse conditions must be faced. The horizontal exchange of genetic information, along with the inherent bacterial genome plasticity, are key players in the evolution of microbial populations with increased tolerance towards challenging conditions, which also include the selective pressure exerted by physical or chemical agents. A central role in microbial adaptation is exerted by the arsenal of antimicrobial agents (antibiotics, antivirals, anti- fungals etc.) used in different settings (from clinical to agriculture sector) to threat or prevent infectious diseases. The abuse and misuse of these medicines drive the evolution and selection of microbes able to survive exposure to an antimicrobial agent that was originally effective to kill the cell or arrest its growth. This phenomenon is defined as Antimicrobial Resistance (AMR). Of a great concern is especially the spread of antibiotic resistance which, day by day, erodes the efficacy of available antibiotics and compromises our ability to cure life-threatening infections caused by multidrug-resistant (MDR) pathogens. This scenario poses an urgent need for new strategies to counteract AMR. With this regard, Synthetic Biology may significantly contribute to the development of non-traditional therapies able to supplant or accompanying antibiotics use. In particular, by rewriting the genetic program of a cell, synthetic biologists aim at designing sophisticated living systems able to carry out a defined task in a reliable and predictable manner. For instance, to treat a localized AMR-associated infection, a microorganism can be rationally programmed to act as a vehicle for the in situ delivery of an antimicrobial agent different from an antibiotic and able to selectively kill resistant bacteria. This genetic program can be encoded in a synthetic circuit by leveraging a collection of biological regulatory parts and the strong programmable nature of a genetic tool named CRISPR technology. The latter can be exploited to design sequence-specific antimicrobials as a guide RNA sequence can be ad hoc designed to drive the cleavage of Cas9 nuclease towards target genes encoding for resistance determinants. In target cells, this event results in bacterial death or re-sensitization to antibiotic therapy. Although this approach has already been explored by several research groups with promising results, at least two major hurdles still have to be faced: the risk of generating new variants of resistance genes in escaper cells that have survived CRISPR targeting by repairing the DNA damage, and the need to develop a robust delivery strategy to mobilize in vivo the synthetic circuit in target bacteria. Both challenges were addressed with the research work presented in this thesis. First, to avoid the threatening consequences of Cas9 cleavage, a synthetic circuitry based on CRISPRi technology was developed as it relies on the ability of dCas9 protein to inhibit the expression of target genes without damaging the relative nucleotide sequence. This is expected to exert re-sensitization of a target pathogen population. In particular, the CRISPRi circuitry was characterized in terms of repression efficiency and multi-targeting capability in two case studies: transcriptional inhibition of model- and clinically-relevant resistance genes. Second, a delivery platform based on bacterial conjugation was exploited to mobilize the CRISPRi circuitry in target resistant bacteria. Finally, a mathematical model was implemented with the purpose to simulate the effect of a CRISPRi-based therapy on AMR pathogens and to compare different biological scenarios including the targeting and the delivery mechanisms, and eventually gaining insight into the best therapeutic strategies for in vivo use.File | Dimensione | Formato | |
---|---|---|---|
PhDthesis_AF_pdfA.pdf
Open Access dal 28/09/2023
Dimensione
11.92 MB
Formato
Adobe PDF
|
11.92 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/86275
URN:NBN:IT:UNIPV-86275