The main topic of this thesis is the construction of canonical $L_{\infty}$ liftings of the components of the Buchweitz-Flenner semiregularity map for coherent sheaves on complex manifolds, using Chern-Simons classes for curved DG-pairs. As an application, we obtain that the Buchweitz-Flenner semiregularity map annihilates all obstructions to deformations of a coherent sheaf on a complex projective manifold. We also introduce semiregularity maps for a Lie pair $(\mathcal{L}, \mathcal{A})$ and a locally free $\mathcal{A}$-module, and prove they annihilate all obstructions to deformations of the $\mathcal{A}$-module, provided that a certain spectral sequence degenerates at $E_1$.

L_infinity morphisms and semiregularity

LEPRI, EMMA
2023

Abstract

The main topic of this thesis is the construction of canonical $L_{\infty}$ liftings of the components of the Buchweitz-Flenner semiregularity map for coherent sheaves on complex manifolds, using Chern-Simons classes for curved DG-pairs. As an application, we obtain that the Buchweitz-Flenner semiregularity map annihilates all obstructions to deformations of a coherent sheaf on a complex projective manifold. We also introduce semiregularity maps for a Lie pair $(\mathcal{L}, \mathcal{A})$ and a locally free $\mathcal{A}$-module, and prove they annihilate all obstructions to deformations of the $\mathcal{A}$-module, provided that a certain spectral sequence degenerates at $E_1$.
11-mag-2023
Inglese
Semiregolarità; deformazioni; algebre DG-Lie; morfismi; L_infinito
MANETTI, Marco
DE SOLE, ALBERTO
Università degli Studi di Roma "La Sapienza"
File in questo prodotto:
File Dimensione Formato  
Tesi_dottorato_Lepri.pdf

accesso aperto

Dimensione 1.16 MB
Formato Adobe PDF
1.16 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/86730
Il codice NBN di questa tesi è URN:NBN:IT:UNIROMA1-86730