We provide a representation formula for viscosity solutions to nonlinear second order PDE problems given as a sup-envelope function. This is done through a dynamic programming principle derived from Denis, Hu and Peng (2010). The formula can be seen as a nonlinear extension of the Feynman--Kac formula and is based on the backward stochastic differential equations theory.

Stochastic representation formulas for viscosity solutions to nonlinear partial differential equations

POZZA, MARCO
2020

Abstract

We provide a representation formula for viscosity solutions to nonlinear second order PDE problems given as a sup-envelope function. This is done through a dynamic programming principle derived from Denis, Hu and Peng (2010). The formula can be seen as a nonlinear extension of the Feynman--Kac formula and is based on the backward stochastic differential equations theory.
16-apr-2020
Inglese
nonlinear feynman-kac formula; viscosity solutions; backward stochastic differential equations (bsde); hamilton-jacobi equations; dynamic programming principle
SICONOLFI, Antonio
DE SOLE, ALBERTO
Università degli Studi di Roma "La Sapienza"
File in questo prodotto:
File Dimensione Formato  
Tesi_dottorato_Pozza.pdf

accesso aperto

Dimensione 827.63 kB
Formato Adobe PDF
827.63 kB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/86855
Il codice NBN di questa tesi è URN:NBN:IT:UNIROMA1-86855