The aim of this thesis is the study and the enhancement of the direct electron transfer of two different dehydrogenases, by means of a proper nanostructuration of the electrodes, for biosensors and enzymatic fuel cells (EFCs) development. Cellobiose dehydrogenase (CDH) is an extracellular enzyme belonging to the oxidoreductase group. CDH contains two subunits: (a) subunit I is the dehydrogenase domain (DHCDH), similar to the domain of other oxidoreductases, which belongs to the glucose-methanol-choline (GMC) oxidoreductase superfamily with a flavin adenine dinucleotide (FAD) co-factor covalently bound to the enzyme structure; (b) subunit II is the cytochrome domain (CYTCDH), which contains a heme b and acts as a built-in mediator by shuttling the electrons to a modified electrode. Both subunits are connected through a flexible linker responsible of the modulation of the internal electron transfer (IET) rate by varying the experimental conditions, such as changes of pH and divalent cations the concentration. Fructose dehydrogenase (FDH) is a membrane-bound flavocytochrome oxidoreductase which also belongs to the hemoflavoproteins family. FDH is a heterotrimeric membrane-bound enzyme complex with a molecular mass of 146.4 kDa, consisting of three subunits: (a) subunit I (DHFDH) is the catalytic domain with a covalently bound flavin adenine dinucleotide (FAD) cofactor, where D-(-)-fructose is involved in a 2H+/2e- oxidation to 5-dehydro-D-(-)-fructose; (b) subunit II (CYTFDH) acts as a built-in electron acceptor with three heme c moieties covalently bound to the enzyme scaffold and two of them involved in the electron transfer pathway; (c) subunit III is not involved in the electron transfer but plays a key role for the enzyme complex stability. The central target of the present thesis is the possibility to improve the electron transfer through the electrode nanostructuration, which can be realized by exploiting new nanomaterials as well as new nanostructuration methods (e.g. “green” synthesized metal nanoparticles, electrodeposition etc.). In the thesis much attention has been paid also to the understanding of the electron transfer pathway of FDH, which would be of fundamental interest in the near future for the development of highly sensitive biosensors and efficient EFCs. The biosensors realized and optimized in this thesis are prototypes of devices that, hopefully, will be commercially available on the market in the next future.
Il lavoro svolto durante i tre anni di dottorato è stato indirizzato verso lo sviluppo di nuovi metodi di sintesi ed elettrosintesi di nanomateriali metallici o carboniosi per il miglioramento del trasferimento elettronico diretto tra l’enzima e l’elettrodo. Questo miglioramento si traduce in un notevole incremento della sensibilità, stabilità e selettività dei biosensori sviluppati nonché della potenza generata da una pila enzimatica a biocombustibile, (Biofuel Cell). La prima parte della tesi riguarda lo studio e l’ottimizzazione del trasferimento elettronico diretto della cellobiosio deidrogenasi (CDH), un enzima appartenente alle flavoemeossidoreduttasi, costituito da due subunità dotate rispettivamente di cofattore FAD (subunità I) e heme b (subunità II). In questa parte abbiamo sintetizzato nanoparticelle di oro e di argento con un nuovo metodo “green”, che impiega come agente riducente la quercetina, un noto flavonoide presente in numerosi alimenti e bevande (es. tè, capperi, mirtilli, etc.). La reazione è stata condotta a temperatura ambiente e a pressione atmosferica senza ulteriore purificazione in quanto la quercetina è nota avere un comportamento stabilizzante delle sospensioni colloidali. Le suddette nanoparticelle sono state impiegate nella costruzione di biosensori per la determinazione del lattosio e di una pila a biocombustibile glucosio/ossigeno. Successivamente, abbiamo sviluppato un nuovo metodo per l’elettrodeposizione di nanoparticelle di oro in modo da ottenere una superficie nanostrutturata ordinata che ha portato allo sviluppo di un biosensore per la determinazione del glucosio nella saliva. La seconda parte della tesi riguarda lo studio del meccanismo del trasferimento elettronico diretto della fruttosio deidrogenasi (FDH), con particolare attenzione rivolta all’influenza dei cationi monovalenti e bivalenti, all’influenza della forma delle nanoparticelle sulla catalisi enzimatica, all’individuazione dei siti “heme” coinvolti nel trasferimento elettronico diretto attraverso l’accesso ad una porzione idrofobica dell’enzima, ed infine allo sviluppo di un biosensore per la determinazione del fruttosio realizzato immobilizzando la FDH su elettrodi di oro altamente poroso.
Biosensors & enzymatic fuel cells based on direct electron transfer of dehydrogenases: characterization and applications
BOLLELLA, PAOLO
2017
Abstract
The aim of this thesis is the study and the enhancement of the direct electron transfer of two different dehydrogenases, by means of a proper nanostructuration of the electrodes, for biosensors and enzymatic fuel cells (EFCs) development. Cellobiose dehydrogenase (CDH) is an extracellular enzyme belonging to the oxidoreductase group. CDH contains two subunits: (a) subunit I is the dehydrogenase domain (DHCDH), similar to the domain of other oxidoreductases, which belongs to the glucose-methanol-choline (GMC) oxidoreductase superfamily with a flavin adenine dinucleotide (FAD) co-factor covalently bound to the enzyme structure; (b) subunit II is the cytochrome domain (CYTCDH), which contains a heme b and acts as a built-in mediator by shuttling the electrons to a modified electrode. Both subunits are connected through a flexible linker responsible of the modulation of the internal electron transfer (IET) rate by varying the experimental conditions, such as changes of pH and divalent cations the concentration. Fructose dehydrogenase (FDH) is a membrane-bound flavocytochrome oxidoreductase which also belongs to the hemoflavoproteins family. FDH is a heterotrimeric membrane-bound enzyme complex with a molecular mass of 146.4 kDa, consisting of three subunits: (a) subunit I (DHFDH) is the catalytic domain with a covalently bound flavin adenine dinucleotide (FAD) cofactor, where D-(-)-fructose is involved in a 2H+/2e- oxidation to 5-dehydro-D-(-)-fructose; (b) subunit II (CYTFDH) acts as a built-in electron acceptor with three heme c moieties covalently bound to the enzyme scaffold and two of them involved in the electron transfer pathway; (c) subunit III is not involved in the electron transfer but plays a key role for the enzyme complex stability. The central target of the present thesis is the possibility to improve the electron transfer through the electrode nanostructuration, which can be realized by exploiting new nanomaterials as well as new nanostructuration methods (e.g. “green” synthesized metal nanoparticles, electrodeposition etc.). In the thesis much attention has been paid also to the understanding of the electron transfer pathway of FDH, which would be of fundamental interest in the near future for the development of highly sensitive biosensors and efficient EFCs. The biosensors realized and optimized in this thesis are prototypes of devices that, hopefully, will be commercially available on the market in the next future.File | Dimensione | Formato | |
---|---|---|---|
Tesi dottorato Bollella
accesso aperto
Dimensione
49.45 MB
Formato
Unknown
|
49.45 MB | Unknown | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/87026
URN:NBN:IT:UNIROMA1-87026