Il moto di particelle in mezzi irregolari, complessi o affollati è un fenomeno comune, dalla scala microscopica a quella macroscopica. Lo si può incontrare tanto in situazioni comuni, come il traffico, quanto in meccanismi biologici, come la riproduzione e la crescita delle cellule, e in importanti processi chimici e tecnologici, come la catalisi di idrocarburi. In molti casi, il trasporto in mezzi confinati o affollati è guidato da elementi 'attivi', cioè unità che consumano energia per sostenere il loro stato di moto. Fra i diversi sistemi soggetti a confinamento, particolare rilevanza è rivestita dalla diffusione di sfere impenetrabili in un canale così stretto da non permettere il passaggio di più di una particella alla volta, conosciuto come diffusione in Single File. La diffusione in Single File è il meccanismo responsabile del trasporto di ioni attraverso la membrana cellulare, della diffusione in materiali micro e nanoporosi ed è stata osservata in molti altri sistemi naturali ed artificiali. Scopo di questa tesi è lo studio su scala mesoscopica di particelle passive (diffusive) o attive (auto-propellenti) in condizioni di Single File, con particolare attenzione all'effetto dell'attività sulla dinamica e sulle proprietà delle particelle nel caso siano presenti condizioni al contorno assorbenti. Gran parte del lavoro è stato svolto nello sviluppo di risultati analitici e numerici nel contesto dei Processi Stocastici. Inoltre, mediante tecniche di manipolazione ottica di singola particella in canali microfluidici, abbiamo ottenuto una eccellente confronto fra dati sperimentali e numerici per il processo di svuotamento di un sistema di particelle in condizioni di Single File. In questa tesi, dopo una breve introduzione ai processi diffusivi fortemente confinati, passeremo in rassegna i lavori più rilevanti della letteratura teorica e sperimentale sulla Single File Diffusion, con particolare attenzione ad un formalismo matematico, il Reflection Principle Method, che sarà applicato in maniera estensiva nel corso della tesi. Studieremo poi le proprietà di un sistema di particelle diffusive in Single File in presenza di condizioni al contorno assorbenti, concentrandoci sulla survival probability, cioè la probabilità di trovare una particella fra gli estremi del sistema al tempo t. Mostreremo come, in condizioni di Single File, abbiamo ottenuto una soluzione analitica per il processo di svuotamento, cioè calcoleremo la probabilità che caratterizza la progressiva diminuzione del numero di particelle in presenza di condizioni al contorno assorbenti, e per la survival probability di una particella 'marcata' all'interno della Single File sia in presenza che in assenza di una forza esterna costante. Caratterizzeremo gli andamenti dei tempi caratteristici di sopravvivenza, chiamati Tempi Medi di Primo Passaggio, in funzione della taglia del canale e del numero iniziale di particelle. Indagheremo inoltre numericamente il caso in cui solo la particella centrale del sistema in Single File subisce l'effetto delle condizioni al contorno assorbenti. Osserviamo un decadimento esponenziale della survival probability, come accade nell'usuale moto Browniano, anche in presenza di estremo confinamento. Introdurremo l'attività nella Single File attraverso un modello di particelle Self-Propelled, di cui descriveremo le proprietà in dettaglio. In particolare in questo modello le particelle possono essere o runners o tumblers, a seconda che la loro traiettoria sia dominata da lunghi tratti rettilinei o da cambi di direzione. In condizioni di Single File, i runners tendono a formare aggregati dinamici: questi cluster vengono continuamente formati e distrutti dalle fluttuazioni casuali della forza propulsiva. Per i tumblers, le probabilità di sopravvivenza sono ben descritte dalla teoria analitica sviluppata per le particelle passive. Per contro, la formazione di cluster dinamici accresce i comportamenti anomali nei tempi caratteristici di sopravvivenza dei runners e ne induce una notevole capacità di opporsi all'azione di un campo esterno.
Dynamical and collective properties of active and passive particles in Single File
LOCATELLI, EMANUELE
2014
Abstract
Il moto di particelle in mezzi irregolari, complessi o affollati è un fenomeno comune, dalla scala microscopica a quella macroscopica. Lo si può incontrare tanto in situazioni comuni, come il traffico, quanto in meccanismi biologici, come la riproduzione e la crescita delle cellule, e in importanti processi chimici e tecnologici, come la catalisi di idrocarburi. In molti casi, il trasporto in mezzi confinati o affollati è guidato da elementi 'attivi', cioè unità che consumano energia per sostenere il loro stato di moto. Fra i diversi sistemi soggetti a confinamento, particolare rilevanza è rivestita dalla diffusione di sfere impenetrabili in un canale così stretto da non permettere il passaggio di più di una particella alla volta, conosciuto come diffusione in Single File. La diffusione in Single File è il meccanismo responsabile del trasporto di ioni attraverso la membrana cellulare, della diffusione in materiali micro e nanoporosi ed è stata osservata in molti altri sistemi naturali ed artificiali. Scopo di questa tesi è lo studio su scala mesoscopica di particelle passive (diffusive) o attive (auto-propellenti) in condizioni di Single File, con particolare attenzione all'effetto dell'attività sulla dinamica e sulle proprietà delle particelle nel caso siano presenti condizioni al contorno assorbenti. Gran parte del lavoro è stato svolto nello sviluppo di risultati analitici e numerici nel contesto dei Processi Stocastici. Inoltre, mediante tecniche di manipolazione ottica di singola particella in canali microfluidici, abbiamo ottenuto una eccellente confronto fra dati sperimentali e numerici per il processo di svuotamento di un sistema di particelle in condizioni di Single File. In questa tesi, dopo una breve introduzione ai processi diffusivi fortemente confinati, passeremo in rassegna i lavori più rilevanti della letteratura teorica e sperimentale sulla Single File Diffusion, con particolare attenzione ad un formalismo matematico, il Reflection Principle Method, che sarà applicato in maniera estensiva nel corso della tesi. Studieremo poi le proprietà di un sistema di particelle diffusive in Single File in presenza di condizioni al contorno assorbenti, concentrandoci sulla survival probability, cioè la probabilità di trovare una particella fra gli estremi del sistema al tempo t. Mostreremo come, in condizioni di Single File, abbiamo ottenuto una soluzione analitica per il processo di svuotamento, cioè calcoleremo la probabilità che caratterizza la progressiva diminuzione del numero di particelle in presenza di condizioni al contorno assorbenti, e per la survival probability di una particella 'marcata' all'interno della Single File sia in presenza che in assenza di una forza esterna costante. Caratterizzeremo gli andamenti dei tempi caratteristici di sopravvivenza, chiamati Tempi Medi di Primo Passaggio, in funzione della taglia del canale e del numero iniziale di particelle. Indagheremo inoltre numericamente il caso in cui solo la particella centrale del sistema in Single File subisce l'effetto delle condizioni al contorno assorbenti. Osserviamo un decadimento esponenziale della survival probability, come accade nell'usuale moto Browniano, anche in presenza di estremo confinamento. Introdurremo l'attività nella Single File attraverso un modello di particelle Self-Propelled, di cui descriveremo le proprietà in dettaglio. In particolare in questo modello le particelle possono essere o runners o tumblers, a seconda che la loro traiettoria sia dominata da lunghi tratti rettilinei o da cambi di direzione. In condizioni di Single File, i runners tendono a formare aggregati dinamici: questi cluster vengono continuamente formati e distrutti dalle fluttuazioni casuali della forza propulsiva. Per i tumblers, le probabilità di sopravvivenza sono ben descritte dalla teoria analitica sviluppata per le particelle passive. Per contro, la formazione di cluster dinamici accresce i comportamenti anomali nei tempi caratteristici di sopravvivenza dei runners e ne induce una notevole capacità di opporsi all'azione di un campo esterno.File | Dimensione | Formato | |
---|---|---|---|
locatelli_emanuele_tesi.pdf
accesso aperto
Dimensione
22.02 MB
Formato
Adobe PDF
|
22.02 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/87824
URN:NBN:IT:UNIPD-87824