Distributed measurement systems are spread in the most diverse application scenarios, and Internet of Things (IoT) transmission equipment is usually the enabling technologies for such measurement systems that need to feature wireless connectivity to ensure pervasiveness. Because wireless measurement systems have been deployed for the last years even in critical environments, assessing transmission technologies performances in such contexts is fundamental. Indeed, they are the most challenging ones for wireless data transmission due to their intrinsic attenuation capabilities. Several scenarios in which measurement systems can be deployed are analysed. Firstly, marine contexts are treated by considering above-the-sea wireless links. Such setting can be experienced in whichever application requiring remote monitoring of facilities and assets that are offshore installed. Some instances are offshore sea farming plants, or remote video monitoring systems installed on seamark buoys. Secondly, wireless communications taking place from the underground to the aboveground are covered. This scenario is typical of precision agriculture applications, where the accurate measurement of underground physical parameters is needed to be remotely sent to optimise crops reducing the wastefulness of fundamental resources (e.g., irrigation water). Thirdly, wireless communications occurring from the underwater to the abovewater are addressed. Such situation is inevitable for all those infrastructures monitoring conservation status of underwater species like algae, seaweeds and reef. Then, wireless links happening traversing metal surfaces and structures are tackled. Such context is commonly encountered in asset tracking and monitoring (e.g., containers), or in smart metering applications (e.g., utility meters). Lastly, sundry harsh environments that are typical of industrial monitoring (e.g., vibrating machineries, harsh temperature and humidity rooms, corrosive atmospheres) are tested to validate pervasive measurement infrastructures even in such contexts that are usually experienced in Industrial Internet of Things (IIoT) applications. The performances of wireless measurement systems in such scenarios are tested by sorting out ad-hoc measurement campaigns. Finally, IoT measurement infrastructures respectively deployed in above-the-sea and underground-to-aboveground settings are described to provide real applications in which such facilities can be effectively installed. Nonetheless, the aforementioned application scenarios are only some amid their sundry variety. Indeed, nowadays distributed pervasive measurement systems have to be thought in a broad way, resulting in countless instances: predictive maintenance, smart healthcare, smart cities, industrial monitoring, or smart agriculture, etc. This Thesis aims at showing distributed measurement systems in critical environments to set up pervasive monitoring infrastructures that are enabled by IoT transmission technologies. At first, they are presented, and then the harsh environments are introduced, along with the relative theoretical analysis modelling path loss in such conditions. It must be underlined that this Thesis aims neither at finding better path loss models with respect to the existing ones, nor at improving them. Indeed, path loss models are exploited as they are, in order to derive estimates of losses to understand the effectiveness of the deployed infrastructure. In fact, some transmission tests in those contexts are described, along with providing examples of these types of applications in the field, showing the measurement infrastructures and the relative critical environments serving as deployment sites. The scientific relevance of this Thesis is evident since, at the moment, the literature lacks a comparative study like this, showing both transmission performances in critical environments, and the deployment of real IoT distributed wireless measurement systems in such contexts.
IoT Transmission Technologies for Distributed Measurement Systems in Critical Environments
PERUZZI, GIACOMO
2023
Abstract
Distributed measurement systems are spread in the most diverse application scenarios, and Internet of Things (IoT) transmission equipment is usually the enabling technologies for such measurement systems that need to feature wireless connectivity to ensure pervasiveness. Because wireless measurement systems have been deployed for the last years even in critical environments, assessing transmission technologies performances in such contexts is fundamental. Indeed, they are the most challenging ones for wireless data transmission due to their intrinsic attenuation capabilities. Several scenarios in which measurement systems can be deployed are analysed. Firstly, marine contexts are treated by considering above-the-sea wireless links. Such setting can be experienced in whichever application requiring remote monitoring of facilities and assets that are offshore installed. Some instances are offshore sea farming plants, or remote video monitoring systems installed on seamark buoys. Secondly, wireless communications taking place from the underground to the aboveground are covered. This scenario is typical of precision agriculture applications, where the accurate measurement of underground physical parameters is needed to be remotely sent to optimise crops reducing the wastefulness of fundamental resources (e.g., irrigation water). Thirdly, wireless communications occurring from the underwater to the abovewater are addressed. Such situation is inevitable for all those infrastructures monitoring conservation status of underwater species like algae, seaweeds and reef. Then, wireless links happening traversing metal surfaces and structures are tackled. Such context is commonly encountered in asset tracking and monitoring (e.g., containers), or in smart metering applications (e.g., utility meters). Lastly, sundry harsh environments that are typical of industrial monitoring (e.g., vibrating machineries, harsh temperature and humidity rooms, corrosive atmospheres) are tested to validate pervasive measurement infrastructures even in such contexts that are usually experienced in Industrial Internet of Things (IIoT) applications. The performances of wireless measurement systems in such scenarios are tested by sorting out ad-hoc measurement campaigns. Finally, IoT measurement infrastructures respectively deployed in above-the-sea and underground-to-aboveground settings are described to provide real applications in which such facilities can be effectively installed. Nonetheless, the aforementioned application scenarios are only some amid their sundry variety. Indeed, nowadays distributed pervasive measurement systems have to be thought in a broad way, resulting in countless instances: predictive maintenance, smart healthcare, smart cities, industrial monitoring, or smart agriculture, etc. This Thesis aims at showing distributed measurement systems in critical environments to set up pervasive monitoring infrastructures that are enabled by IoT transmission technologies. At first, they are presented, and then the harsh environments are introduced, along with the relative theoretical analysis modelling path loss in such conditions. It must be underlined that this Thesis aims neither at finding better path loss models with respect to the existing ones, nor at improving them. Indeed, path loss models are exploited as they are, in order to derive estimates of losses to understand the effectiveness of the deployed infrastructure. In fact, some transmission tests in those contexts are described, along with providing examples of these types of applications in the field, showing the measurement infrastructures and the relative critical environments serving as deployment sites. The scientific relevance of this Thesis is evident since, at the moment, the literature lacks a comparative study like this, showing both transmission performances in critical environments, and the deployment of real IoT distributed wireless measurement systems in such contexts.File | Dimensione | Formato | |
---|---|---|---|
phd_unisi_ 094288.pdf
accesso aperto
Dimensione
9.29 MB
Formato
Adobe PDF
|
9.29 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/88193
URN:NBN:IT:UNISI-88193