L'obiettivo di questa tesi è il downscaling di protocolli di differenziazione neuronale, a partire da hiPSC, utilizzando tecnologie di programmazione trascrizionale, in microfluidica. La piattaforma microfluidica lab-on-chip, utilizzata per la validazione dei protocolli, offre la possibilità di lavorare in un contesto di stretto controllo delle condizioni della coltura cellulare, come ad esempio la consegna efficiente di fattori solubili. Invece, la tecnologia delle cellule staminali pluripotenti indotte (iPSCs) consente di riprogrammare le cellule somatiche, come i fibroblasti, in un fenotipo simile a quello embrionale e di ottenere, in questo modo, un'espansione clonale di cellule indifferenziate che possono quindi essere differenziate nel fenotipo desiderato (ad esempio quello neuronale). La combinazione tra coltura cellulare in microfluidica e iPSC fornisce un contributo molto importante nella comprensione di quei meccanismi molecolari, responsabili di patologie specifiche, utili all’individuazione di efficaci terapie. Questo lavoro trova le sue basi ed una forte motivazione in un contesto che, ad oggi, non fornisce modelli esaurienti in vitro o in vivo, perché una grande quantità di malattie neurologiche e studi sul cervello umano vengono eseguiti su biopsie post-mortem o su tessuti raccolti a fasi della malattia molto tardive. I modelli animali, invece, potrebbero rappresentare una possibilità di comprendere alcuni meccanismi neurologici, ma sono limitati e talvolta non ricapitolano completamente il fenotipo del paziente. In questo scenario, abbiamo focalizzato la nostra attenzione sul downscaling dei protocolli di differenziazione neuronale in vitro a partire da hiPSC, sfruttando prima di tutto i vettori lentivirali per la sovraespressione di fattori di trascrizione, nel nostro caso la Neurogenina 2, un gene proneurale. Inoltre, abbiamo usato questo approccio con una prospettiva innovativa: regolando la durata e la frequenza dell’espressione di Ngn2, attraverso la somministrazione controllata di doxiciclina, è possibile imitare, in vitro, il profilo oscillatorio di Ngn2 osservato in vivo. In vivo, infatti, i progenitori neurali sono caratterizzati da un pattern di espressione di Ngn2 oscillatorio, mentre i neuroni mostrano un'espressione sostenuta e costante di Ngn2. Inoltre, poiché la generazione di neuroni, con un’elevata efficienza, è influenzata da un corretto rilascio di fattori esogeni alle cellule, in modo time-dependent, abbiamo sviluppato un protocollo di induzione neuronale utilizzando una piattaforma microfluidica automatizzata. Infine, per evitare qualsiasi aberrazione genetica causata dai vettori lentivirali e per avere un sistema che potrebbe essere facilmente modulato in termini di dose e frequenza di somministrazione, abbiamo indotto la generazione di neuroni, in hiPSC, introducendo sintetici mRNA modificati codificanti per Ngn2 e accoppiato questo metodo con la tecnologia microfluidica. Ci siamo, quindi, concentrati sull'aumento dell'efficienza di differenziazione neuronale, lavorando sul signaling cellulare, importante per lo sviluppo in vivo del sistema nervoso centrale.

Integration of transcriptional programming and micro-technologies for in vitro modelling of neural development

TOLOMEO, ANNA MARIA
2018

Abstract

L'obiettivo di questa tesi è il downscaling di protocolli di differenziazione neuronale, a partire da hiPSC, utilizzando tecnologie di programmazione trascrizionale, in microfluidica. La piattaforma microfluidica lab-on-chip, utilizzata per la validazione dei protocolli, offre la possibilità di lavorare in un contesto di stretto controllo delle condizioni della coltura cellulare, come ad esempio la consegna efficiente di fattori solubili. Invece, la tecnologia delle cellule staminali pluripotenti indotte (iPSCs) consente di riprogrammare le cellule somatiche, come i fibroblasti, in un fenotipo simile a quello embrionale e di ottenere, in questo modo, un'espansione clonale di cellule indifferenziate che possono quindi essere differenziate nel fenotipo desiderato (ad esempio quello neuronale). La combinazione tra coltura cellulare in microfluidica e iPSC fornisce un contributo molto importante nella comprensione di quei meccanismi molecolari, responsabili di patologie specifiche, utili all’individuazione di efficaci terapie. Questo lavoro trova le sue basi ed una forte motivazione in un contesto che, ad oggi, non fornisce modelli esaurienti in vitro o in vivo, perché una grande quantità di malattie neurologiche e studi sul cervello umano vengono eseguiti su biopsie post-mortem o su tessuti raccolti a fasi della malattia molto tardive. I modelli animali, invece, potrebbero rappresentare una possibilità di comprendere alcuni meccanismi neurologici, ma sono limitati e talvolta non ricapitolano completamente il fenotipo del paziente. In questo scenario, abbiamo focalizzato la nostra attenzione sul downscaling dei protocolli di differenziazione neuronale in vitro a partire da hiPSC, sfruttando prima di tutto i vettori lentivirali per la sovraespressione di fattori di trascrizione, nel nostro caso la Neurogenina 2, un gene proneurale. Inoltre, abbiamo usato questo approccio con una prospettiva innovativa: regolando la durata e la frequenza dell’espressione di Ngn2, attraverso la somministrazione controllata di doxiciclina, è possibile imitare, in vitro, il profilo oscillatorio di Ngn2 osservato in vivo. In vivo, infatti, i progenitori neurali sono caratterizzati da un pattern di espressione di Ngn2 oscillatorio, mentre i neuroni mostrano un'espressione sostenuta e costante di Ngn2. Inoltre, poiché la generazione di neuroni, con un’elevata efficienza, è influenzata da un corretto rilascio di fattori esogeni alle cellule, in modo time-dependent, abbiamo sviluppato un protocollo di induzione neuronale utilizzando una piattaforma microfluidica automatizzata. Infine, per evitare qualsiasi aberrazione genetica causata dai vettori lentivirali e per avere un sistema che potrebbe essere facilmente modulato in termini di dose e frequenza di somministrazione, abbiamo indotto la generazione di neuroni, in hiPSC, introducendo sintetici mRNA modificati codificanti per Ngn2 e accoppiato questo metodo con la tecnologia microfluidica. Ci siamo, quindi, concentrati sull'aumento dell'efficienza di differenziazione neuronale, lavorando sul signaling cellulare, importante per lo sviluppo in vivo del sistema nervoso centrale.
29-nov-2018
Inglese
Neural development, neuronal induction, pluripotent stem cells, microfluidics, transcriptional programming, signaling pathways
MURACA, MAURIZIO
GIAQUINTO, CARLO
Università degli studi di Padova
177
File in questo prodotto:
File Dimensione Formato  
tesi_Anna_Maria_Tolomeo.pdf

accesso aperto

Dimensione 8.02 MB
Formato Adobe PDF
8.02 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/88443
Il codice NBN di questa tesi è URN:NBN:IT:UNIPD-88443