Is it possible to enhance the performance of an operator by inferring his/her mental workload online from his brain activity? Also, would be possible to use such information to adapt the functionalities of the operative interface he/she is interacting with? This is the experimental question that my PhD research activity tried to answer. Even if not quantified, it is widely accepted the assumption that the human brain cognitive resources are limited. Depending on the amount of cognitive resources, i.e. the mental workload, committed to the main task, the human capacity to face additional unexpected events could dramatically decrease. It was demonstrated that humans could achieve their best performance only if maintaining their mental workload within an optimum range, otherwise they will be more prone to commit errors. Unfortunately, the human error is one of the main causes of accidents and no-natural catastrophes. Therefore, neuroscientific research is giving an important contribute in the development of Brain-Computer Interfaces able to recognize the user’s mental state covertly (i.e. without interfering with his/her main activity) and to help him if needed. In this context, my research activity aimed to develop a method able to evaluate, even online, the user’s mental workload, on the basis of his/her brain activity measured by Electroencephalography, in operational environments, facing all those issues related to perform reliable neurophysiological measures outside the laboratory controlled conditions. The developed method (patented) has been successfully validated in three different operational environments, i.e. the Air Traffic Management, the car driving and the robot-assisted surgery. Also, it has been applied online in a real application of Brain Computer Interface, where the operative platform changed its behaviour according on the EEG-based measure of the actual operator’s mental workload level.
È possibile esaltare le prestazioni di un operatore stimando il suo carico di lavoro mentale dalla propria attività cerebrale, ed usare questa informazione per adattare le funzionalità dell’interfaccia che sta utilizzando? Questa è la domanda sperimentale a cui la mia attività di ricerca del Dottorato ha provato a dare una risposta. Anche se in maniera non quantificata, è ampiamente accettata l’idea che le risorse cognitive del cervello umano siano limitate. In funzione della quantità di risorse cognitive, in altre parole del carico di lavoro mentale, dedicate al compito principale, la capacità umana di affrontare ulteriori eventi inaspettati potrebbe diminuire drasticamente. È stato dimostrato che gli uomini possono raggiungere le proprie migliori prestazioni solo mantenendo il proprio carico di lavoro mentale all’interno di un intervallo ottimale, altrimenti aumenta la probabilità che commettano errori. Sfortunatamente, l’errore umano è una delle principali cause di incidenti e catastrofi non naturali. Per tale motivo, la ricerca neuroscientifica sta dando un importante contributo allo sviluppo di Interfacce Cervello-Computer in grado di riconoscere lo stato mentale dell’utente e di aiutarlo se necessario. In tale contesto, la mia attività di ricercar aveva lo scopo di sviluppare un metodo in grado di valutare online il carico di lavoro mentale dell’utente, sulla base della sua attività cerebrale misurata attraverso Elettroencefalografia, in ambienti operativi, affrontando tutti quei problemi relativi all’eseguire misure neurofisiologiche affidabili al di fuori dei contesti controllati propri dei laboratori. Il metodo sviluppato (brevettato) è stato con successo validato in tre differenti ambienti operative, ossia il controllo di traffico aereo, la guida di auto e la chirurgia assistita da robot. Inoltre, esso è stato applicato online in una reale applicazione di Interfaccia Cervello Computer, dove la piattaforma operative variava il suo livello di automazione sulla base del carico di lavoro mentale, misurato attraverso tecnica EEG, dell’operatore.
Electroencephalography-based measures of human mental workload in operational environments for the development of passive Brain-Computer Interfaces
DI FLUMERI, GIANLUCA
2018
Abstract
Is it possible to enhance the performance of an operator by inferring his/her mental workload online from his brain activity? Also, would be possible to use such information to adapt the functionalities of the operative interface he/she is interacting with? This is the experimental question that my PhD research activity tried to answer. Even if not quantified, it is widely accepted the assumption that the human brain cognitive resources are limited. Depending on the amount of cognitive resources, i.e. the mental workload, committed to the main task, the human capacity to face additional unexpected events could dramatically decrease. It was demonstrated that humans could achieve their best performance only if maintaining their mental workload within an optimum range, otherwise they will be more prone to commit errors. Unfortunately, the human error is one of the main causes of accidents and no-natural catastrophes. Therefore, neuroscientific research is giving an important contribute in the development of Brain-Computer Interfaces able to recognize the user’s mental state covertly (i.e. without interfering with his/her main activity) and to help him if needed. In this context, my research activity aimed to develop a method able to evaluate, even online, the user’s mental workload, on the basis of his/her brain activity measured by Electroencephalography, in operational environments, facing all those issues related to perform reliable neurophysiological measures outside the laboratory controlled conditions. The developed method (patented) has been successfully validated in three different operational environments, i.e. the Air Traffic Management, the car driving and the robot-assisted surgery. Also, it has been applied online in a real application of Brain Computer Interface, where the operative platform changed its behaviour according on the EEG-based measure of the actual operator’s mental workload level.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Dottorato_Di Flumeri.pdf
accesso aperto
Dimensione
3.68 MB
Formato
Adobe PDF
|
3.68 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/88919
URN:NBN:IT:UNIROMA1-88919