I explain a way to compute Fourier coefficients of modular forms associated to normalizer of non-split Cartan subgroups of GL(2,Z/pZ) and how, using these coefficients, one can compute explicit equations of modular curves associated to same subgroup. I attached some tables containing some examples of results of this method.

Rational Points on Modular Curves

MERCURI, PIETRO
2014

Abstract

I explain a way to compute Fourier coefficients of modular forms associated to normalizer of non-split Cartan subgroups of GL(2,Z/pZ) and how, using these coefficients, one can compute explicit equations of modular curves associated to same subgroup. I attached some tables containing some examples of results of this method.
17-giu-2014
Inglese
Elliptic curve
GARRONI, Adriana
GARRONI, Adriana
Università degli Studi di Roma "La Sapienza"
File in questo prodotto:
File Dimensione Formato  
Mercuri Pietro - Rational Points on Modular Curves (tesi).pdf

accesso aperto

Licenza: Tutti i diritti riservati
Dimensione 431.02 kB
Formato Adobe PDF
431.02 kB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/90313
Il codice NBN di questa tesi è URN:NBN:IT:UNIROMA1-90313