L’obiettivo generale di questo progetto di ricerca è stato di verificare la potenzialità delle microalghe come fonte alternativa di biomassa per la produzione di etanolo. In particolare, sono state discusse teoricamente, sperimentalmente e tramite simulazione di processo la coltivazione, l’idrolisi e la fermentazione della biomassa microalgale. Inizialmente, grazie ad un’ampia ricerca bibliografica ed a prove preliminari effettuate nel Laboratorio Microalghe del Dipartimento di Ingegneria Industriale della Università di Padova si è dimostrato che le specie più promettenti da studiare erano Synechococcus PCC 7002, Chlorella vulgaris e Scenedesmus obliquus, grazie alle loro elevate velocità di crescita e capacità di accumulo di carboidrati, che costituiscono le materia-prima per la produzione di etanolo (fino al 50-60% del peso secco). In particolare, l’attenta analisi della letteratura riguardo a queste specie ha consentito di verificare che: - per la produzione di carboidrati è preferibile sviluppare un processo continuo, perché richiede un solo step, mentre il processo batch ne richiede due, e perciò consente di ottenere produttività significativamente inferiori; - sono disponibili pochi lavori sulla possibilità di usare le microalghe in un processo continuo di questo tipo, mentre sono parecchi i riferimenti al processo batch; - mancano informazioni sulla capacità di produrre carboidrati da parte di S. PCC 7002. In una prima parte del lavoro sono stati quindi pianificati e condotti esperimenti in modalità batch con S. PCC 7002, per studiare come mantenere la stabilità e vitalità della coltura durante tutto il periodo di coltivazione. Si sono rilevati problemi con il controllo del pH, ed é stato approfondito l’uso di bicarbonato come fonte di carbonio assieme ad un tampone inorganico, dimostrando in un primo lavoro che il suo impiego è efficiente per la produzione di biomassa ma insufficiente per accumulare un alto contenuto di carboidrati, a causa di una significativa inibizione osmotica causata dall’alta concentrazione di sodio in soluzione. D’altro canto, l’applicazione di un tampone con sostanze organiche, generalmente usato nella coltivazione di microalghe e cianobatteri, ha evidenziato notevoli fenomeni di tossicità per questa specie. Al contrario, il tampone inorganico CO2-bicarbonato messo a punto successivamente è stato capace di garantire la stabilità del pH durante 12 giorni di coltivazione, ed ha consentito di ottenere 6 g L-1 di biomassa (peso secco) con circa il 60% di contenuto di carboidrati. La coltivazione in continuo di C. vulgaris in un fotobioreattore piatto e sottile è stata studiata per verificare la produzione di carboidrati secondo questa modalità operativa. Il lavoro ha evidenziato l’importanza della riduzione della concentrazione di azoto in entrata al reattore, che va rapportata ai valori di intensità di luce e tempo di residenza per massimizzare la produzione di carboidrati. Si sono misurati valori massimi per la produttività di biomassa e di carboidrati pari a 0.7 e 0.37 g L-1 giorno-1. La stessa procedura é stata usata nello studio del comportamento di S. obliquus, per vedere se l’approccio era valido anche durante la coltivazione all’aperto, simulando la fornitura della luce in modo stagionale. S. obliquus ha mostrato una produttività quasi tre volte maggiore che Chlorella, raggiungendo valori di 0.8 g L-1 giorno-1 (con luce costante) e di 0.71 g L-1 giorno-1 (nell’estate). Questa produttività di carboidrati, se estrapolata a dimensioni industriali, consentirebbe di ottenere tra 45–100 tonbiomass ha-1 anno-1, ben di più di quanto prodotto con le fonti tradizionali di carboidrati. Un sistema reattore-sedimentatore con riciclo parziale di biomassa è generalmente usato a livello industriale in processi di coltivazione e/o fermentazione. Questo sistema fornisce semplicità e diversi vantaggi per la produzione su larga scala. É stato quindi messo a punto un modello per la simulazione di tale processo, nel caso specifico delle microalghe, per verificare l’influenza dei gradi di libertà (tempo di residenza, rapporto di riciclo della biomassa, età della biomassa e sua velocità di sedimentazione) sulle prestazioni. I principali risultati sono: - la definizione di un rapporto di riciclo minimo Rmin, di un intervallo operativo per la stessa variabile, e di un valore massimo per la portata di spurgo di biomassa Fwmax; - la dimostrazione che la perdita di biomassa dalle sommità del sedimentatore abbassa significativamente le prestazioni del sistema; - la costruzione di grafici adimensionali che legano R a θc/θ e FI/FW (età della biomassa/tempo di residenza, e rapporto tra le portate di ingresso e di spurgo); - il confronto fra il modello rigoroso messo a punto ed il modello semplificato generalmente considerato in letteratura. Synechococcus è stata coltivata in acque reflue urbane (sintetiche e reali, con valori di COD pari a 340.0 ± 14.1 mg L-1, di azoto totale pari a 31.0 ± 1.4 mg L-1, e di fosforo totale a 8.20 ± 0.99 mg L-1), con l’obbiettivo di ottenere la depurazione da questi inquinanti. Questa specie è stata molto efficiente nella rimozione di COD, azoto e fosforo totale, raggiungendo valori sotto i limiti di legge in due giorni di coltivazione. L’acqua reflua sintetica ha evidenziato una limitazione dei micronutrienti quando la concentrazione di COD era elevata, differentemente dell’acqua reflua reale, in cui Synechococcus è cresciuta più velocemente. Successivamente, l’idrolisi e la fermentazione di biomassa microalgale sono state studiate con riferimento ai processi di saccarificazione acida ed enzimatica, e con riferimento ai microorganismi Saccharomyces cerevisiae e Pichia stipitis, rispettivamente. L’idrolisi acida, con acido solforico 0-5% v/v, è stata condotta a diverse temperature (110-130 °C) e tempi di reazione (0-60 min) partendo da 100 g L-1 di concentrazione di biomassa (Chlorella vulgaris). Gli zuccheri idrolizzati sono stati recuperati con un valore massimo pari al 92%, ottenuto con il 3% di acido e 20 min di reazione a 120 °C. La solubilizzazione di biomassa ha esibito un ordine di reazione n = 3.63 ± 0.18 ed un’energia di attivazione pari a 41.19 ± 0.18 kJ/mol. Questi valori sono significativamente diversi di quelli trovati per l’idrolisi di matrici lignocellulosiche, generalmente considerata di primo ordine con Ea = 100-200 kJ/mol, e dimostrano che la biomassa microalgale è più suscettibile al trattamento termico catalizzato all’acido in confronto ai lignocellulosici. Un’equazione basata sulla cinetica di Michaelis-Menten modificata per tenere conto della concentrazione di acido è riuscita a modellare tutti i risultati sperimentali, con un valore della costante di semi-saturazione per la biomassa PolKM pari al 42% della concentrazione iniziale, e con una resa di fermentazione di circa il 60%. Prima di realizzare l’idrolisi enzimatica, si é reso necessario procedere ad un’ottimizzazione del pretrattamento della biomassa. È stata studiata l’ultrasonicazione applicando un piano statistico di sperimentazione su tre livelli con 3 esperimenti centrali (in tutto si sono condotte 11 prove). Le variabili ottimizzate sono state l’intensità, il tempo di pretrattamento e la concentrazione di biomassa. I risultati hanno dimostrato che l’intensità e il tempo di trattamento sono più importanti e consentono di ottenere un recupero degli zuccheri superiore al 90%, in 4-8 ore. Si é visto che l’energia spesa nel processo di ultrasonicazione non è direttamente collegata con l’efficienza dell’idrolisi, per cui questa può essere condotta efficientemente anche riducendo il consumo di energia nel pretrattamento. Infine, si sono eseguiti esperimenti di fermentazione dell’idrolizzato ad etanolo con le due specie menzionate (S. cerevisiae e P. stipitis). Si sono ottimizzati la concentrazione di inoculo (7.5 g L-1) ed il consorzio (25% Pichia + 75% Saccharomyces) per avere una produttività tra 5 e 10 g L-1 ora-1 (prossimo al valore industriale). Si è però visto che le velocità di fermentazione sono però più basse a causa di una inibizione dovuta alla accresciuta salinità dell’idrolizzato, un fattore. Per questo motivo, la parte di fermentazione necessita di essere più approfondita al fine di validare l’impiego di questo tipo di biomassa a livello industriale.

Exploitation of microalgal biomass as an alternative source to bioethanol production

DE FARIAS SILVA, CARLOS EDUARDO
2017

Abstract

L’obiettivo generale di questo progetto di ricerca è stato di verificare la potenzialità delle microalghe come fonte alternativa di biomassa per la produzione di etanolo. In particolare, sono state discusse teoricamente, sperimentalmente e tramite simulazione di processo la coltivazione, l’idrolisi e la fermentazione della biomassa microalgale. Inizialmente, grazie ad un’ampia ricerca bibliografica ed a prove preliminari effettuate nel Laboratorio Microalghe del Dipartimento di Ingegneria Industriale della Università di Padova si è dimostrato che le specie più promettenti da studiare erano Synechococcus PCC 7002, Chlorella vulgaris e Scenedesmus obliquus, grazie alle loro elevate velocità di crescita e capacità di accumulo di carboidrati, che costituiscono le materia-prima per la produzione di etanolo (fino al 50-60% del peso secco). In particolare, l’attenta analisi della letteratura riguardo a queste specie ha consentito di verificare che: - per la produzione di carboidrati è preferibile sviluppare un processo continuo, perché richiede un solo step, mentre il processo batch ne richiede due, e perciò consente di ottenere produttività significativamente inferiori; - sono disponibili pochi lavori sulla possibilità di usare le microalghe in un processo continuo di questo tipo, mentre sono parecchi i riferimenti al processo batch; - mancano informazioni sulla capacità di produrre carboidrati da parte di S. PCC 7002. In una prima parte del lavoro sono stati quindi pianificati e condotti esperimenti in modalità batch con S. PCC 7002, per studiare come mantenere la stabilità e vitalità della coltura durante tutto il periodo di coltivazione. Si sono rilevati problemi con il controllo del pH, ed é stato approfondito l’uso di bicarbonato come fonte di carbonio assieme ad un tampone inorganico, dimostrando in un primo lavoro che il suo impiego è efficiente per la produzione di biomassa ma insufficiente per accumulare un alto contenuto di carboidrati, a causa di una significativa inibizione osmotica causata dall’alta concentrazione di sodio in soluzione. D’altro canto, l’applicazione di un tampone con sostanze organiche, generalmente usato nella coltivazione di microalghe e cianobatteri, ha evidenziato notevoli fenomeni di tossicità per questa specie. Al contrario, il tampone inorganico CO2-bicarbonato messo a punto successivamente è stato capace di garantire la stabilità del pH durante 12 giorni di coltivazione, ed ha consentito di ottenere 6 g L-1 di biomassa (peso secco) con circa il 60% di contenuto di carboidrati. La coltivazione in continuo di C. vulgaris in un fotobioreattore piatto e sottile è stata studiata per verificare la produzione di carboidrati secondo questa modalità operativa. Il lavoro ha evidenziato l’importanza della riduzione della concentrazione di azoto in entrata al reattore, che va rapportata ai valori di intensità di luce e tempo di residenza per massimizzare la produzione di carboidrati. Si sono misurati valori massimi per la produttività di biomassa e di carboidrati pari a 0.7 e 0.37 g L-1 giorno-1. La stessa procedura é stata usata nello studio del comportamento di S. obliquus, per vedere se l’approccio era valido anche durante la coltivazione all’aperto, simulando la fornitura della luce in modo stagionale. S. obliquus ha mostrato una produttività quasi tre volte maggiore che Chlorella, raggiungendo valori di 0.8 g L-1 giorno-1 (con luce costante) e di 0.71 g L-1 giorno-1 (nell’estate). Questa produttività di carboidrati, se estrapolata a dimensioni industriali, consentirebbe di ottenere tra 45–100 tonbiomass ha-1 anno-1, ben di più di quanto prodotto con le fonti tradizionali di carboidrati. Un sistema reattore-sedimentatore con riciclo parziale di biomassa è generalmente usato a livello industriale in processi di coltivazione e/o fermentazione. Questo sistema fornisce semplicità e diversi vantaggi per la produzione su larga scala. É stato quindi messo a punto un modello per la simulazione di tale processo, nel caso specifico delle microalghe, per verificare l’influenza dei gradi di libertà (tempo di residenza, rapporto di riciclo della biomassa, età della biomassa e sua velocità di sedimentazione) sulle prestazioni. I principali risultati sono: - la definizione di un rapporto di riciclo minimo Rmin, di un intervallo operativo per la stessa variabile, e di un valore massimo per la portata di spurgo di biomassa Fwmax; - la dimostrazione che la perdita di biomassa dalle sommità del sedimentatore abbassa significativamente le prestazioni del sistema; - la costruzione di grafici adimensionali che legano R a θc/θ e FI/FW (età della biomassa/tempo di residenza, e rapporto tra le portate di ingresso e di spurgo); - il confronto fra il modello rigoroso messo a punto ed il modello semplificato generalmente considerato in letteratura. Synechococcus è stata coltivata in acque reflue urbane (sintetiche e reali, con valori di COD pari a 340.0 ± 14.1 mg L-1, di azoto totale pari a 31.0 ± 1.4 mg L-1, e di fosforo totale a 8.20 ± 0.99 mg L-1), con l’obbiettivo di ottenere la depurazione da questi inquinanti. Questa specie è stata molto efficiente nella rimozione di COD, azoto e fosforo totale, raggiungendo valori sotto i limiti di legge in due giorni di coltivazione. L’acqua reflua sintetica ha evidenziato una limitazione dei micronutrienti quando la concentrazione di COD era elevata, differentemente dell’acqua reflua reale, in cui Synechococcus è cresciuta più velocemente. Successivamente, l’idrolisi e la fermentazione di biomassa microalgale sono state studiate con riferimento ai processi di saccarificazione acida ed enzimatica, e con riferimento ai microorganismi Saccharomyces cerevisiae e Pichia stipitis, rispettivamente. L’idrolisi acida, con acido solforico 0-5% v/v, è stata condotta a diverse temperature (110-130 °C) e tempi di reazione (0-60 min) partendo da 100 g L-1 di concentrazione di biomassa (Chlorella vulgaris). Gli zuccheri idrolizzati sono stati recuperati con un valore massimo pari al 92%, ottenuto con il 3% di acido e 20 min di reazione a 120 °C. La solubilizzazione di biomassa ha esibito un ordine di reazione n = 3.63 ± 0.18 ed un’energia di attivazione pari a 41.19 ± 0.18 kJ/mol. Questi valori sono significativamente diversi di quelli trovati per l’idrolisi di matrici lignocellulosiche, generalmente considerata di primo ordine con Ea = 100-200 kJ/mol, e dimostrano che la biomassa microalgale è più suscettibile al trattamento termico catalizzato all’acido in confronto ai lignocellulosici. Un’equazione basata sulla cinetica di Michaelis-Menten modificata per tenere conto della concentrazione di acido è riuscita a modellare tutti i risultati sperimentali, con un valore della costante di semi-saturazione per la biomassa PolKM pari al 42% della concentrazione iniziale, e con una resa di fermentazione di circa il 60%. Prima di realizzare l’idrolisi enzimatica, si é reso necessario procedere ad un’ottimizzazione del pretrattamento della biomassa. È stata studiata l’ultrasonicazione applicando un piano statistico di sperimentazione su tre livelli con 3 esperimenti centrali (in tutto si sono condotte 11 prove). Le variabili ottimizzate sono state l’intensità, il tempo di pretrattamento e la concentrazione di biomassa. I risultati hanno dimostrato che l’intensità e il tempo di trattamento sono più importanti e consentono di ottenere un recupero degli zuccheri superiore al 90%, in 4-8 ore. Si é visto che l’energia spesa nel processo di ultrasonicazione non è direttamente collegata con l’efficienza dell’idrolisi, per cui questa può essere condotta efficientemente anche riducendo il consumo di energia nel pretrattamento. Infine, si sono eseguiti esperimenti di fermentazione dell’idrolizzato ad etanolo con le due specie menzionate (S. cerevisiae e P. stipitis). Si sono ottimizzati la concentrazione di inoculo (7.5 g L-1) ed il consorzio (25% Pichia + 75% Saccharomyces) per avere una produttività tra 5 e 10 g L-1 ora-1 (prossimo al valore industriale). Si è però visto che le velocità di fermentazione sono però più basse a causa di una inibizione dovuta alla accresciuta salinità dell’idrolizzato, un fattore. Per questo motivo, la parte di fermentazione necessita di essere più approfondita al fine di validare l’impiego di questo tipo di biomassa a livello industriale.
31-ott-2017
Inglese
bioetanolo, coltivazione di microalgale, cinetica, modelli, fermentazione bioethanol, microalgal cultivation, kinetics, model, fermentation
BERTUCCO, ALBERTO
COLOMBO, PAOLO
Università degli studi di Padova
379
File in questo prodotto:
File Dimensione Formato  
DeFariasSilva_CarlosEduardo_tesi.pdf

accesso aperto

Dimensione 17.94 MB
Formato Adobe PDF
17.94 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/90785
Il codice NBN di questa tesi è URN:NBN:IT:UNIPD-90785