Materiali ceramici a base di Si3N4 altamente porosi sono potenziali candidati per varie applicazioni di ingegneria: filtraggio di gas ad alta temperature ed in condizioni critiche, isoltaori termici, trasporto di catalizzatori, bioreattori e impianti biomedici (recenti risultati di letteratura hanno confermato la non citotossicità e la biocompatibilità del Si3N4). L’attività di ricerca della presente tesi riguarda lo sviluppo di materiali ceramici a base di nitruro di silicio caratterizzati da una struttura cellulare, contenenti porosità interconnessa (> 80 vol%) e celle con una distribuzione dimensionale che varia dai 10 μm fino agli 800 μm. La tecnica utilizzata per la produzione dei materiali ceramici cellulari consiste nella schiumatura diretta; sono state sviluppate emulsioni concentrate (O/W olio-in-acqua) stabilizzate da tensioattivi e gelcasting di biopolimeri ecocompatibili, come step intermedi nella produzione di materiali inorganici altamente porosi. Diversamente dai tradizionali metodi di schiumatura diretta, la schiumatura è fornita dall’ evaporazione (ed espansione) delle gocce di alcani durante l'essiccazione delle emulsioni. Mentre nel caso di gelcasting, la capacità dei tensioattivi schiumogeni combinata con la gelificazione termica fornisce la schiumattura. Nel caso della produzione di componenti a base di nitruro di silicio la sinterizzazione rappresenta un punto critico, poiché sono necessarie temperature elevate e prolungato tempo di mantenimento alla T di sinterizzazione al fine di garantire sufficiente densificazione a causa delle basse velocità di diffusione allo stato solido. Al fine di superare queste difficoltà, nella presente tesi sono state sviluppate due strategie: 1) Sinterizzazione convenzionale a 1600 °C e 1700 °C in flusso di N2, al fine di inibire le reazioni di dissociazione e sinterizzare con basse perdite di peso. 2) Sinterizzazione con intensa radiazione termica, attraverso la tecnica dello Spark Plasma Sintering (SPS), la quale si è dimostrata efficace al fine di densificare gli struts della schiuma e sviluppare nanofili di SiC sulle pareti di cella e sugli struts, a temperature più basse e per tempi più brevi rispetto alla sinterizzazione convenzionale. Nanofili di SiC contribuiscono ad aumentare la resistenza alla frattura delle schiume. Inoltre, l’influenza di addittivi di sinterizzazione, Y2O3 e MgO, sulla temperatura di sinterizzazione e sulla formazione di β–Si3N4 grains, sono stati investigati. Le strutture cellulari a base di Si3N4 prodotte con le tecniche sopra descritte sono state caratterizzate in termini di microstruttura (distribuzione della dimensione di celle e porosità), proprietà meccaniche (test di compressione) e permeabilità ai gas. Porosità totale che varia dai ~74 fino agli 89 vol%, e le dimensioni delle celle variano in un ampio range ~20 fino agli 850 μm, in funzione della velocità di emulsione, tipici di biopolimeri. E’ stato trovato che le schiume sinterizzate a 1700 °C (sinterizzazione convenzionale) sono caratterizzate da elevati valori di resistenza a compressione up to 33MPa per effetto dello sviluppo di grani allungati di fase β–Si3N4 e per effetto della notevole densificazione delle particelle in corrispondenza delle pareti di cella e degli struts. Le misure di permeabilità hanno dato valori di costanti di permeabilità nel range delle schiume ottenute con la tecnica del gelcasting e sono pertanto utili per applicazioni di filtraggio. La combinazione di processi colloidali, schiumatura, rapida consolidazione delle schiume e sinterizzazione in assenza di pressione a temperature moderate applicate ai ceramici porosi a base di Si3N4, sono state applicate anche ad altri sistemi come ad esempio al sistema Ti-Al-C (Max-Phases).
Advanced cellular ceramics processed using direct foaming methods
GUZI DE MORAES, ELISANGELA
2015
Abstract
Materiali ceramici a base di Si3N4 altamente porosi sono potenziali candidati per varie applicazioni di ingegneria: filtraggio di gas ad alta temperature ed in condizioni critiche, isoltaori termici, trasporto di catalizzatori, bioreattori e impianti biomedici (recenti risultati di letteratura hanno confermato la non citotossicità e la biocompatibilità del Si3N4). L’attività di ricerca della presente tesi riguarda lo sviluppo di materiali ceramici a base di nitruro di silicio caratterizzati da una struttura cellulare, contenenti porosità interconnessa (> 80 vol%) e celle con una distribuzione dimensionale che varia dai 10 μm fino agli 800 μm. La tecnica utilizzata per la produzione dei materiali ceramici cellulari consiste nella schiumatura diretta; sono state sviluppate emulsioni concentrate (O/W olio-in-acqua) stabilizzate da tensioattivi e gelcasting di biopolimeri ecocompatibili, come step intermedi nella produzione di materiali inorganici altamente porosi. Diversamente dai tradizionali metodi di schiumatura diretta, la schiumatura è fornita dall’ evaporazione (ed espansione) delle gocce di alcani durante l'essiccazione delle emulsioni. Mentre nel caso di gelcasting, la capacità dei tensioattivi schiumogeni combinata con la gelificazione termica fornisce la schiumattura. Nel caso della produzione di componenti a base di nitruro di silicio la sinterizzazione rappresenta un punto critico, poiché sono necessarie temperature elevate e prolungato tempo di mantenimento alla T di sinterizzazione al fine di garantire sufficiente densificazione a causa delle basse velocità di diffusione allo stato solido. Al fine di superare queste difficoltà, nella presente tesi sono state sviluppate due strategie: 1) Sinterizzazione convenzionale a 1600 °C e 1700 °C in flusso di N2, al fine di inibire le reazioni di dissociazione e sinterizzare con basse perdite di peso. 2) Sinterizzazione con intensa radiazione termica, attraverso la tecnica dello Spark Plasma Sintering (SPS), la quale si è dimostrata efficace al fine di densificare gli struts della schiuma e sviluppare nanofili di SiC sulle pareti di cella e sugli struts, a temperature più basse e per tempi più brevi rispetto alla sinterizzazione convenzionale. Nanofili di SiC contribuiscono ad aumentare la resistenza alla frattura delle schiume. Inoltre, l’influenza di addittivi di sinterizzazione, Y2O3 e MgO, sulla temperatura di sinterizzazione e sulla formazione di β–Si3N4 grains, sono stati investigati. Le strutture cellulari a base di Si3N4 prodotte con le tecniche sopra descritte sono state caratterizzate in termini di microstruttura (distribuzione della dimensione di celle e porosità), proprietà meccaniche (test di compressione) e permeabilità ai gas. Porosità totale che varia dai ~74 fino agli 89 vol%, e le dimensioni delle celle variano in un ampio range ~20 fino agli 850 μm, in funzione della velocità di emulsione, tipici di biopolimeri. E’ stato trovato che le schiume sinterizzate a 1700 °C (sinterizzazione convenzionale) sono caratterizzate da elevati valori di resistenza a compressione up to 33MPa per effetto dello sviluppo di grani allungati di fase β–Si3N4 e per effetto della notevole densificazione delle particelle in corrispondenza delle pareti di cella e degli struts. Le misure di permeabilità hanno dato valori di costanti di permeabilità nel range delle schiume ottenute con la tecnica del gelcasting e sono pertanto utili per applicazioni di filtraggio. La combinazione di processi colloidali, schiumatura, rapida consolidazione delle schiume e sinterizzazione in assenza di pressione a temperature moderate applicate ai ceramici porosi a base di Si3N4, sono state applicate anche ad altri sistemi come ad esempio al sistema Ti-Al-C (Max-Phases).File | Dimensione | Formato | |
---|---|---|---|
guzi_de_moraes_elisangela_thesis.pdf
accesso aperto
Dimensione
6.71 MB
Formato
Adobe PDF
|
6.71 MB | Adobe PDF | Visualizza/Apri |
guzi_de_moraes_elisangela_thesis.pdf
accesso aperto
Dimensione
6.61 MB
Formato
Adobe PDF
|
6.61 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/91146
URN:NBN:IT:UNIPD-91146