I generatori di calore sono attualmente i sistemi più utilizzati nelle applicazioni di riscaldamento domestico. Questi sono di norma generatori di calore a tubi di fumo, i quali consistono in uno scambiatore a fascio tubiero in cui i fumi prodotti da un processo di combustione stazionaria fluiscono all’interno dei tubi, mentre il fluido secondario, comunemente acqua, si trova nel mantello. Nel primo Capitolo di questa Tesi viene presentata un’analisi sperimentale e teorica del funzionamento di un generatore di calore a tre giri di fumo, operante sia in condizioni stazionarie che in condizioni dinamiche. In letteratura è estremamente difficile trovare dati teorici e sperimentali riguardanti questi sistemi. Le prove sperimentali sono state svolte variando le condizioni di lavoro del generatore di calore e lavorando sia con che senza generatori di turbulenza all’interno dei tubi che compongono l’ultimo passaggio del sistema. Un modello dinamico, sviluppato in ambiente MatLab/Simulink, del generatore di calore a tre giri di fumo è quindi presentato in questo elaborato. Il modello è caratterizzato da una struttura a sotto-sistemi che lo rende facilmente adattabile a geometrie diverse, e può essere utilizzato per predirre il comportamento dei generatori di calore durante funzionamento in regime stazionario o dinamico. Le prestazioni dei generatori di calore possono essere incrementate aumentando lo scambio di calore tra i gas combusti e l’acqua attraverso l’inserimento di generatori di turbulenza nei tubi dove fluiscono i gas. In particolare, l’inserimento di turbulatori all’interno dell’ultimo passaggio dei fumi nei generatori di calore comporta un aumento dell’efficienza globale del sistema, per via della minore temperatura di uscita dei gas che si riflette in minori perdite al camino. Per questo motivo, l’aumento dello scambio termico monofase attraverso l’inserimento di generatori di turbulenza è un importante ambito di ricerca per l’industria dei generatori di calore. Ad ogni modo, è importante considerare che ad un aumento del coefficiente di scambio termico è associato un incremento delle perdite di carico per attrito nel sistema, ed entrambi gli elementi devono essere considerati nel valutare le prestazione dei turbulatori. Nella seconda parte di questo elaborato, dopo aver presentato una review delle soluzioni più comuni in letteratura, sono analizzate attraverso simulazioni CFD le prestazioni delle geometrie attualmente utilizzate nei generatori di calore. Gli effetti di diversi parametri geometrici, come la posizione del turbulatore all’interno del tubo e il diametro dello stesso, sono stati analizzati. Inoltre, attraverso le simulazioni si sono ricavate delle equazioni predittive del comportamento degli inserti. In ultimo è proposta una modifica alle geometrie attuali al fine di proporre una soluzione più performante. L’efficienza dei generatori di calore può essere incrementata attraverso la condensazione del vapore presente nei gas combusti allo scarico. Per questo, lo studio dello scambio termico bifase è di interesse per l’industria dei generatori di calore. Durante il processo di condensazione del vapore la maggior parte della resistenza termica è localizzata nel condensato che si forma a contatto con la superficie fredda. Riducendo, o eventualmente annullando, lo spessore del film di liquido alla parete si possono quindi ottenere coefficienti di scambio termico bifase estremamente elevati, incrementando quindi il flusso termico specifico scambiato. Questo permetterebbe di incrementare le performance del sistema a parità di geometria, o di ridurre l’area di scambio (e quindi i costi del generatore di calore) a parità di effetto utile. Per questo, nell’ultimo Paragrafo di questa Tesi si analizza l’incremento del coefficiente di scambio termico durante condensazione di vapore su superfici nano-ingegnerizzate. L’effetto delle proprietà di bagnabilità delle superfici sulla modalità e sulle prestazioni del processo di condensazione è studiato analizzando il comportamento di superfici convenzionali, superidrofiliche, idrofobiche e superidrofobiche durante condensazione di vapore puro fluente a diverse velocità. Lo scopo della ricerca è di rimuovere (condensazione a gocce) o ridurre (condensazione a film con scivolamento del condensato) il film di liquido che si forma durante il processo bifase, agendo sulle proprietà della superficie, e di valutare l’effetto della rugosità superficiale sul coefficiente di scambio durante condensazione a film.
Enhancement of single- and two- phase heat transfer: inside heat generators
BISETTO, ALBERTO
2015
Abstract
I generatori di calore sono attualmente i sistemi più utilizzati nelle applicazioni di riscaldamento domestico. Questi sono di norma generatori di calore a tubi di fumo, i quali consistono in uno scambiatore a fascio tubiero in cui i fumi prodotti da un processo di combustione stazionaria fluiscono all’interno dei tubi, mentre il fluido secondario, comunemente acqua, si trova nel mantello. Nel primo Capitolo di questa Tesi viene presentata un’analisi sperimentale e teorica del funzionamento di un generatore di calore a tre giri di fumo, operante sia in condizioni stazionarie che in condizioni dinamiche. In letteratura è estremamente difficile trovare dati teorici e sperimentali riguardanti questi sistemi. Le prove sperimentali sono state svolte variando le condizioni di lavoro del generatore di calore e lavorando sia con che senza generatori di turbulenza all’interno dei tubi che compongono l’ultimo passaggio del sistema. Un modello dinamico, sviluppato in ambiente MatLab/Simulink, del generatore di calore a tre giri di fumo è quindi presentato in questo elaborato. Il modello è caratterizzato da una struttura a sotto-sistemi che lo rende facilmente adattabile a geometrie diverse, e può essere utilizzato per predirre il comportamento dei generatori di calore durante funzionamento in regime stazionario o dinamico. Le prestazioni dei generatori di calore possono essere incrementate aumentando lo scambio di calore tra i gas combusti e l’acqua attraverso l’inserimento di generatori di turbulenza nei tubi dove fluiscono i gas. In particolare, l’inserimento di turbulatori all’interno dell’ultimo passaggio dei fumi nei generatori di calore comporta un aumento dell’efficienza globale del sistema, per via della minore temperatura di uscita dei gas che si riflette in minori perdite al camino. Per questo motivo, l’aumento dello scambio termico monofase attraverso l’inserimento di generatori di turbulenza è un importante ambito di ricerca per l’industria dei generatori di calore. Ad ogni modo, è importante considerare che ad un aumento del coefficiente di scambio termico è associato un incremento delle perdite di carico per attrito nel sistema, ed entrambi gli elementi devono essere considerati nel valutare le prestazione dei turbulatori. Nella seconda parte di questo elaborato, dopo aver presentato una review delle soluzioni più comuni in letteratura, sono analizzate attraverso simulazioni CFD le prestazioni delle geometrie attualmente utilizzate nei generatori di calore. Gli effetti di diversi parametri geometrici, come la posizione del turbulatore all’interno del tubo e il diametro dello stesso, sono stati analizzati. Inoltre, attraverso le simulazioni si sono ricavate delle equazioni predittive del comportamento degli inserti. In ultimo è proposta una modifica alle geometrie attuali al fine di proporre una soluzione più performante. L’efficienza dei generatori di calore può essere incrementata attraverso la condensazione del vapore presente nei gas combusti allo scarico. Per questo, lo studio dello scambio termico bifase è di interesse per l’industria dei generatori di calore. Durante il processo di condensazione del vapore la maggior parte della resistenza termica è localizzata nel condensato che si forma a contatto con la superficie fredda. Riducendo, o eventualmente annullando, lo spessore del film di liquido alla parete si possono quindi ottenere coefficienti di scambio termico bifase estremamente elevati, incrementando quindi il flusso termico specifico scambiato. Questo permetterebbe di incrementare le performance del sistema a parità di geometria, o di ridurre l’area di scambio (e quindi i costi del generatore di calore) a parità di effetto utile. Per questo, nell’ultimo Paragrafo di questa Tesi si analizza l’incremento del coefficiente di scambio termico durante condensazione di vapore su superfici nano-ingegnerizzate. L’effetto delle proprietà di bagnabilità delle superfici sulla modalità e sulle prestazioni del processo di condensazione è studiato analizzando il comportamento di superfici convenzionali, superidrofiliche, idrofobiche e superidrofobiche durante condensazione di vapore puro fluente a diverse velocità. Lo scopo della ricerca è di rimuovere (condensazione a gocce) o ridurre (condensazione a film con scivolamento del condensato) il film di liquido che si forma durante il processo bifase, agendo sulle proprietà della superficie, e di valutare l’effetto della rugosità superficiale sul coefficiente di scambio durante condensazione a film.File | Dimensione | Formato | |
---|---|---|---|
PhD_Thesis_v2.pdf
accesso aperto
Dimensione
6.35 MB
Formato
Adobe PDF
|
6.35 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/92002
URN:NBN:IT:UNIPD-92002